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FOREWORD 

Thls report is prepared in two volumes. Volume I reports the Executive 

Summary and the findings of the research. Volume 11 contahs the appendices 

to the final report. Ihe appelldices list detailed documentation which supparts 

the research ffndiags. 'Ibis includes specific materials and procedures 

used in: a) the open and closed forms of the knowledge tests, b) the full 

mission simulations, and c) the paper and pencil tests. 
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EXECUTIVE SUMMARY 

A critical in-flight event is a situation which is unexpected, unplanned 

and unanticipated, ami is perceived by &e pilot in command to threaten the 

safety of the aircraft. l%e CIFE is one which requires pilot Judgment beyond 

routine decision making or a pre-programmed decision structure and where 

the safety of the aircraft depends more on pilot cognitive processes than 

skilled motor performance . 

Research Objectives 

The objectives of this research were to: 

1) Describe and define the scope of the critical in-flight event with 

emphasis on pilot management of available resources. 

2) Develop detailed scenarios for both full mission simulation and 

paper and pencil (PIP) testing of pilot responses to CIFE's. 

3) Develop statistical relationships among pilot characteristics and 

observed responses to  CIFE 's. 

These objectives grew out of a concern with anomalies in reported accidents 

and incidents in which some pilots or crews seemed better able to handle 

unusual in-flight events than others. For example, why did a professional 

crew piloting a Baltimore Colts 727 fail to recognize the symptoms of a 

frozen pitot system and subsequently enter a fatal stall-spin maneuver ? 

Contrast that event with the performance of an airline pilot who used diffxential 

power to overcome a locked elevator problem on his three-engine aircraft. 

What characteristics of his training and decision making strategy permitted him 
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to develop a successful solution to the problem? Similar questions are 

raised by events such as a Cessna 206 pilot who experienced engine failure 

due to fuel exhaustion in one tank, and crashed the aircraft with the second 

tank nearly full of unused fuel. 

Project Development 

The project began with an early concern for the dynamics of CIFE's and 

broad attempts to identify pertinent research issues. The final products 

were 1) a set of scenarios with associated hardware and techniques for 

studying CIFE phenomena in a basic general aviation flight simulator; 

2) a set of paper and pencil scenarios and associated techniques for studying 

pilot diagnostic strategies and diversion decision making processes; 3) a set 

of testlag instruments designed to measure a pilot's knowledge of aircraft 

subsystems and d e r s t m d i n g  of troubleshooting techniques; 4) a study 

relating cockpit crew procedural compliance with performance errors.  

By-products of this research included one M.S. deslgn project, one M.S. 

thesis, and a Ph.D. dissertation*. Major milestones in the project develop- 

ment are summarized in  Figure 1. 

Model - 
A five-phase model of pilot CIE'E response is hypothesized on the basis 

of a) discussions with e.xperts in industry and government and b )  observations 

made about pilot performance in both simulator and paperlpencil scenarios. 

*See .Appendix B 
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The five phases are: 

1) Detection 

2)  Diagnosis 

3) Option Generation 

4) Decision Making 

5) Execution 

Information seeking activities permeate all five phases of this process. The 

inter-relationships and feedback among these phases art? outlined in Figure 2. 

GAT-Scenarios 

A Singer GAT-1 flight trainer was mc W e d  to permit a variety of extra 

failure modes and to enhame data collection. Three scenarios were created 

to be tested in the GAT-1. These scenarios each involved a critical in-flight 

event imbedded in what was  otherwise a routine simulated IFR flight. Subjects 

went through a pre-flight planning phase involving a complete weather briefing, 

route planning, and filing of flight plan. Take-off, climb and enroute phase of 

each scenario began under mrmal IFR operating conditions. Real time ATC 

communications, including background conversations, were used to enbance 

realism. Some 20-30 minutes into each simulated flight one of the following 

critical events was  introduced: 
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1) Fuel starvation on the active tank (as might be encountered 

because of a loose fuel cap). 

2) Partial power failure (as might be caused by a broken baffle in 

a muffler). 

3) Navaid loss (as might be caused by failure of a single airborne 

receiver component). 

Subject performance was  observed through one-way windows on the 

simulator and recorded by video tape, a 3-channel audio tape and written 

evaluations by the three experimenters present. These data were later used 

to measure "stick and rudder" skills and communications techniques as  well 

a s  to map each pilot's response to the critical in-flight event. 

Twelve subjects were selected for testing in the full mission GAT scenarios. 

Although all were IFR rated, they ranged in age from 20 to 56 years old, in 

flight experience from 270 to 8800 hours and in certification from private pilot 

to ATP. Each subject was  given two different forms of knowledge survey to 

complete and was thoroughly debriefed after his flight. 

A wide range of cockpit management styles and apparent skill levels were 

observed. Although it was difficult to quantify, "good performance" was 

easily recognized by the observers of the experiment. The elements of "good 

performance '' included: 

1) professional use of the radio 

2)  precise heading and altitude control prior to and during the CIFE 

3) constant awarenes of the aircraft position along its intended route 
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4) prompt, but not necessarily instant, response to the on-set of the 

CIFE (detection) 

5) systematic procedure for trowsble shooting 

6) knowledge and use of available ATC resources 

7 )  diversion decisions which allowed for further potential uncertainties 

The sample was too small to indicate anything other than some initial 

hypotheses concerning pilot performance in such a full-miss ion setting. 

However, the following tendencies were noted: 

1) Cockpit management style varies widely among pilots. For 

example, some are  extremely self-reliant, others want 

immediate and extensive help from ATC while still others 

make the decision making process a joint effort with ATC. 

2) Good stick and rudder pilots seem to have excess capability 

and maintain good stick and rudder performance during and 

after the CIFE. More marginal stick and rudder pilots, on 

the other hand, show increased frequency and amplitude of 

heading and altitude excursions, and experience communication 

difficulties when faced with a CIFE. 

3) Pi!ots who score well on the knowledge test instruments tend 

to perform well in problem diagnosis and deCiS:Gl\ making. 

From the observations of the experimenters and comments made by 

participating subjects, it appears that such a full mission simulation exercise, 

coupled with m appropriate knowledge survey and debriefing, could be a 

valuable tool for recurrent training of IFR pilots. 
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Paper and Pencil Scenarios 

Paper and pencil (PIP) scenarios, and associated experimental techniques, 

were created to streamline the data collection and analysis for pilot responses 

to critical in-flight events. Although they lacked the high s t ress  environment 

of the GAT-1 experiments, these scenarios did yield useful data on pilot 

problem diagnosis and decision making skills and strategies. 

The paper and pencil scenarios have the following advantages over the 

GAT- 1 scenarios : 

1) Experimental conditions a re  more easily replicated between subjects. 

2) Data collection is more easily accomplished. 

3) Diagnostic capabilities and decision making strategies can be more 

easily isolated. 

4) They are  much cheaper, in terms of both time and money, which 

means that a much larger sample size of subjects can be run. 

The paper and pencil experiments were conducted in a workshop-type 

environment. A group of subjects, usually Lhree or four, were seated in a 

conference room for a common briefing and initial testing. Each subject was  

asked to complete a background questionnaire, which asked for data on his 

personal flying experience. Items such as age, ratings, total fIyinb time, 

recency of experience and type of flying most often done were included. They 

then were given a 20-question knowledge survey (multiple-choice questions) 

designed to measure their knowledge of aircraft sub-systems and trouble- 

shooting skills. After the tests were completed, the group was given a complete 

briefing on the equipment to be flown, the weather expected, and the airspace 



in which they would be assumed to be operating for purposes of their CIFE 

scenarios. A t  that point the group was disbanded with each subject accompany- 

ing a single experimenter to a private room wbere the scenarios were administrod.. 

mo sets of scenarios were used on each subject. The first set consist ' .  

of four scenarios directed toward problem diagnosis. The second set 

involved two exercises designed to explore diversion-decision making strat- 

egies of pilots. (A diversion decision involves choosing an alternate airport 

when the intended destination airport is unavailable due to a CIFE. A t  the 

completion of the paper and pencil experiments the subjects were invited to 

tour the GAT-1 simu!ator used in the earlier study a d  to participate in an 

informal debriefing. The entire process required about ninety minutes from 

beginning to end. 

For these tests, forty subjects were used. Almost all were current 

instrument-rated pilots with ages ranging from twenty to sixty-five years, with 

both civil and military backgrounds, and embracing total flying experience from 

270 to 19,000 hours. As a group, these pilots were considered to be above 

average in experience. 

PIP Diagnostic Scenarios 

Four separate diagnostic problem situations were presented to each subject. 

Thet2 scenarios centered about problems presumed to be created by: 

1) an oil leak at the oil-pressure gauge line 

2) a vacuum pump failure 

3) a right magneto drive gear failure 

4) a frozen static pnrt 
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After instructions for the diagnosis scenarios were read to the subject, 

he was given an aircraft instrumeni panel layout diagram and enroute chart 

for the first problem. The scenario was then read, concluding with a 

statement of a major symptom, e.g., 'You smell hot engine oil. What 

would you do?". The subject was given a maximum of four minutes to seek 

information from the experimenter and conclude his diagnosis of the problem. 

He cculd ask for any information available from instruments noted on .is 

panel diagram, response to control inputs or external cues such as oil on 

the windshield or  ice on the wings. The experimenter had a diagnosis infor- 

mation checklist from which he provided information in response to the 

subject's request. For example, if the subject asked for oil temperature, 

the experimenter would respond ''normal" if that was the entry on his check- 

list. A s  each piece of data was requested, its order was noted on the exper- 

imenter's checklist. If a diagnosis was not offered by the subject prior to 

the elapsed time (four minutes) the subject was asked for his best estimate 

of the disgnosis at  that time. At the completion of the allotted time the subject 

was asked to estimate the criticality (scale of 1 to 7 )  of the problem as he 

perceived it. Then he was given the correct diagnosis and was asked to 

re-estimate the criticality in the light of this perfect information. The same 

procedure was repeated for each of the four scenarios. 

Eight pieces of basic information were extracted from each diagnosis 

summary sheet. These were: 
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1) Number of inquiries. (An inquiry represents a request for 

a single piece of information .) 

2) Total tracks of inquiries. (A track represents a single cqherent 

line of questionhg which may invo1bd several inquiries; for exawqie, 

fuel pressure, fuel flow, fuel gauge status.) 

3) Unique tracks of inquiries. (A wbjzct may start one track, 

abandon it, shift to a second track and then return to the first 

track. Although three total tracks would be noted, only two 

unique tracks exist. ) 

4)  Correctness score. (A score of 1 to 5 was given which reflected 

how close the subject's final diagnosis was to the "perfect" 

solution. ) 

5 )  Time to complete the diagnosis. 

6) Criticaliw estimate before the correct diagnosis was revealed. 

This was  a subjective-rating scale, 1-7. 

7) Criticality : timate after the correct diagnosis was revealed. 

8) Number of costrol hpul inquiries. (A control inquiry involves 

movement of an aircraft control, e.g., 'What happens if I 

advance the throttle?") 
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Tbese primary data were then used to create a number of compouud 

performance measures including estimates of efficiency and merit. 

"Efficiency" was  measured by the time and number of inquiries required 

to reach a diagnosis. Subjects who reached their diagnosis quickly (be it 

right or wrong) and who made relatively few inquiries received high efficiency 

scores. "Merit" was measured by multiplying correchess  and efficiency 

scores on a given scenario. 

P/P Decision ~ a k i x u  scenario 

The decision making phase of the paper and pencil experiments was 

divided into two parts, an information seeking part and a rank ordering 

of alternatives. The basic scenario used for both phases involved a hypo- 

thetical flight in a Cherokee Arrow from Bangor, Maine to Glens Falls, 

New York €or a business xeeting. Weather along the route and at the 

destination was  marginal with rain, low ceilings and drizzle signifying 

instrument meteorological conditions (IMC). The scenario w a s  read to 

the subject as he was invited to follow the progress of the hypothetical flight 

along an enroute chart. About midway along the route the aircraft encountered 

an alternator failure, the diagnosis for which was  clearly defined for the 

subject. An upper limit on the length of time battery power alone would 

run the required electrical equipment was then given. This maximu. t i  time 

(exact time was  uncertain) was less than the time required to reach the 

primary destination, thus forcing a diversion decision on the pilot. 
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For &c information seeking task the pilot was supplled with a simplifled 

enroute chart with sixteen airports indicated by letters along his fllght path. 

The subject was then given two minutes to ask for information about any of 

those sirports. For each airport questitned, there were six pieces of 

information the e-qerimenter was prepared to provide: 

1) Besring and dlstance from his  present location. 

2) Ceiling at the airport. 

3) Visibility at  the airport. 

4 )  Approach aids avsilable. 

5 )  ATC services available. 

6)  Terrain surrounding the airport. 

The c.uperimenter provided the pllot with each piece of Information requested and 

the e.xperitr,enter recorded the sequence in which it was requested. The pilot 

continued to request information until he had selected an airport (or until 

forced to seleci :kt the end of two minutes) and revealed his choice to the 

e.xperlmenter. 

For the ranking of alternatives phase, the pilot was asked to rank each 

of sixteen alternative airports. He was provided with ATC facilities, ceiling 

and visibility, time to be reached and approach aids information on all airports. 

The nirports were to be ranked from "most preferable" to ' least preferable" 

glven h i s  problem sltuation. No time limit was imposed for this task. In 

order to assess his risk-taking tendencies, the e.sperimcnter posed n series 

of questions for the pllot to consider after he had obtained h is  ranking. The 

questions asked how far he wculd go down his list of ranked airports to find 

one with maintenance facilities to repair his airplane. 
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The data from the radcing task were used to determine the relative worth 

structure. The coefncients, or weights, for the variables ATC, weather, 

time, and approach were obtained by regression analysis according to the 

techniques of conjoint measurement. The range of values for the coefficients 

w a s  0.250 to 4.000. The relative worth coefficients were later used to 

determine if any relationship existed with pilot background variables, results 

of the knowledge survey, diagnostic abiliw, and search pattern exhibited in 

the information seeking task. 

P/P Scenario ~enersl izs t ions 

For purposes of analysis the closed form (multiple choice) knowledge survey 

was considered to be part of the P/P experiments. This knowledge survey 

focused on aircraft subsystems and trouble shooting in three major areas: 

1) engine and fuel systems, 2) electrical systems and cockpit instrumentation, 

and 3) weather and IFR operations. 

A series of Spearman Rank Correlation skdies ,  stepwise regression 

analyses and t-tests were performed on the combination of pilot background 

variables, knowledge survey results, diagnostic scenario performance and 

decision making measures. Among the observations made from these analyses 

are the following: 

1) There is no correlation between knowledge score and total 

flight hours. 

2)  Knowledge score is correlated with pilot ratings held. 

3) Pilots good in one section of the knowledge survey tend to be 

s o d  in all sections, 



4) Diagnostic performance is highly correlated -with knowledge scores. 

5 )  Knowledge is inversely related to total diagnostic inquiries, 

e.g., knowledgeable pilots reach conclusions trigtit or wrong) 

more rapidly than others. 

6) Total diagnostic inquiries is inversely related to correctness. 

This sugg -ts that undirected experimentation is poor diagnosis 

style. 

7 )  Total diagnosis correctness score is correlated utth efficiency. 

8) Civil trained pilots place a highe? worth m ATC service in 

diversion decisions than do military pilots. 

9) Private pilots place a higher worth on weather factors in 

diversion decisions than do commercial and A? rated pilots. 

10) ATP rated pilots place high worth on time in diversion decisions. 

11) Pilots with good diagnostic scores place less weight on approach 

aids in diversion decisions. 

12) Pilots with good diagnostic scores place more weight on time in 

diversion decisions. 

13) The pilots with good diagnostic performance were characterized 

as knowledgeable about aircraft systems, employed few tracks 

to get at an answer, used few inquiries per track, and emphasized 

time in their destination diversion decision. They were not 

differentiated by flight hours, ratings, training, or  type of flying. 



Pmcedural Compliance - 
In support of the general research objectives, Schdield investigated 

airline cockpit crew operations. For his dissertation he used data generated 

in an experiment conchcted in 1976 by Dr. H. P. Ruffell Smith under the 

auspices of the NASA-Ames Research Center*. Ruffell Smith used a full 

mission simulation scenario of a W i n g  747 flight to study crew errors 

generated during high workload segments of the simulated flight. Schofield 

used the same data to study routine tasks of flight operations ciure low work- 

load segments of that flight. He was concerned with: 

1) Quantifying routine procedures. 

2) Analyzing observed crew e r ro r s  to iden- which particular crew 

members were  the primary causes of such errors.  

3) Comparing measures of procedural compliance and operator error .  

Schofield identified nineteen separate words and phrases associated with 

airc- w operations which had procedural connotation. Using  that list as the 

basis for definition he enumerated 97 normal orzrating procedures which 

cc:sid be identified as standard cockpit activities in a 75-minute night. This 

list did not include any abnormal, alternate, irregular or emergency pro- 

c e h r a s  . 
Twenty-one crew coordination procedures were separ-ited from the total 

list for further study. This group was emphasized because those procedures 

captured A e  essential ingredients of group leadership, cr?w management, 

-. 
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and behavioral conformity. Schofield sought to examine relationship8 between 

meticulous compliance with coordination procedures and the crew errors 

noted by Ruffle Smith. 

Schofield selected terl runs, which had the same set of observers and 

usable audio data throughout, for detailed procedural anal_ysis. The 2 1  crew 

coordination procedures were  further subdivided into check lists, call outs, 

configuration changes and transfers with Each of the ten crews evaluated in 

each subdivision. 

The prescribed command-announcement-challenge sequence for check- 

list procedures was fully executed in only five of fifw opportunities, when the 

crew members involved were pilot and co-pilot. When the flight engineer 

was involved, fifteen of thirty opportunities were fully executed. Schofield 

hypothesized that crew coordination might be improved by making the flight 

engineer the challenger of all checklists. 

-e hundred seventy opportunities, among the ten crews, to execute 

callout procedures were noted. Thirty eight procedural e r rors  were 

identified, half of which were e r rors  in altitude callouts durinp climb or 

descent. 

The 104 observed configuration changes, e.g. , gear and flap extensions, 

were well executed in terms of established oral procedures. Verbal 

indicators of transfer of EGT monitors were also given with few omissions. 

However, the optional transfer of control procedure was seldom observed 

even though opportunities existed to use it. 
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Schofield used stepwize multiple regression techniques to identify the 

best models relating the independent (procedural) variables to each of the 

dependent (error) variables in turn. H e  found that dependent variables 

which reflect e r rors  by the flying pilot, by the captain, and by the two 

pilots collectively all have highly significant regression models in which 

pilot flying checklist commands and non-flying pilot callouts are the common 

independent variables. 

The Schofield study of procedural compliance by aircrews who participated 

in the Ruffell Smith experiment suggests the following observations: 

1) Crew members face an impossible challenge in attempting to 

mentally catalog all of the standard operating procedures (SOP) 

published for them. 

2) Routine mn-compliance with an assortment of S9P's has been 

documented. 

3) Human redundancy by itself does not erradicate personnel 

errors .  

4) A statistical link appears to exist between operator e r rors  

and procedural compliance. 
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I. INTRODUCTION 

Departure: 75Y what is your altitude? 

N1675Y: Columbus Departure Control, what do you show our altitude on 
our encoding altimeter ? 

Departure: I show you at 500 feet. That's why I asked you. 

N1675Y: It shows 1000. 

Departure: OK. Stop altitude squawk. I show you at 400 feet nGw. 
Obviously it's not working right. 

N1675Y: 75T we're having problems with airspeed and everything here--- 
What do you show our airspeed ? 

Departure: OK. 751' do you want vectors back into the airport? 

N1675Y: Yeah! Let's do that. 

The above brief excerpt of an actual communication between ATC and a pilot 

e.xperiencing in-flight problems in IFR conditions typifies a persistent dilemma 

in aviatiox,. Ke  do not (nor does the air traffic controller) understand the true 

nature of this pilot's problem. How long has he experienced airspeed and altitude 

problems? fs it a matter of structural ice, mechsnxal failure or  pilot e r r o r ?  

If an emergency is to be declared, what does the fact of declaring an emergency 

mean to the air traffic controller? \'hat does it mean to the pilot? (A confessior. 

of incompetence--an invitation to loss of license? Is there a need to specify 

intentions ? Can the pilot provide intentions if he is unaware of the options 

open to him? How can we avoid those situations in which the pilot relinquishes 

command to someone on the ground? 

'These excerpts from a communications tape are  verbatim. Only the air- 
craft identification number has been changed. 
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The assessment of the criticality of the situation demands more information, 

such as the pilot's capability, his training level, his experience with in-fl'ght 

problems, weather, location, terrain, altitude, etc. Yet this situation is but 

an example of many such events that occur each year in our national aviation 

system. 

Each year a i i  traffic contr3' mvides several thousand assists to pilots. 

In 1970, of the 4,187 assists, 53T involved lost pilots, but 25% involiLa 

fuel problems, navigational failures, and mechanical problems. How many 

problems went unannounced and resulted in tragic consequences for lack of 

pilot understanding of how to cope with in-flight problems ? How many 

emergencies were declnred which could have been avoided and reduced dis- 

ruption in air traffic control systems ? 

Discussions with pilots of various e.xperience levels and ratings reveal 

little agreement as to when to declare an emergency and the operational and 

legal ccisequences of such a declaration. There are  instances wherein pilots 

have risked and lost their lives and those of the passengers to avoid possible 

suspension of license as a consequence of declaring an emergency when they 

believed they had violated a regulation. (See NTSB-AAR-71-1). Do the 

perceptions of the air  traffic control personnel differ from that of pilots in 

this regard? Most importantly, can pilots be trained to handle in-flight 

problems, provide early assessment and Intelligent response to the situation ? 

What should a pilot do if: 

a )  strange noises occur '? 

b)  the door opens in flight? 
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c) the ammeter shows a discharge? 

d) the radios fail? 

e) smoke appears in the cockpit? 

f )  he  cannot determine his location in his flight progress ? 

g) the weather closes in on him? 

Some empirical evidence of pilot perception of threatening e-uperiences is 

shown in Tables 1 and 2. These data suggest that a pilot's ratings, type of 

operation, and implied skill level, all serve to alter his perception of critical 

in-flight events. 

What should the "system" be able to do to assist the pilot in properly 

assessing his res1 (or perceived) problem? No simple answer exists for 

these situations nor does past research appear to address these issues. It 

is hard to imagine the extent of myths and misconceptions about critical in- 

flight events. Critical events lead to air traffic control disruption, panic, 

accidents, and perhaps firm resolutions by pilots never to fly again. 

In the NASA Aviation Safety Reporting System, 1,497 incidents were 

submitted in the period of July 15 to October 15, 1976. Of these 3% involved 

aircraft structure and subsystem factors and about 9% navigation and communi- 

cation situations. If one assumes that the Reporting System captures only a 

portion of the total incidents occurring in the system, this statistic also 

suggests there may be thousands of critical in-flight events each yeaT. 

While one objective of this research is to describe and define the scope of 

the critical in-flight event (CIFE), a definition or set of qualifiers for the 

purposes of this report is set forth below. 
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m i e  1-2. Most Threatening Experiences Reported by Private 
Pilots (Reproduced from Study to Determine the 
Flight Profile and Miszion of the Ceitificated 
Private Pilot, FAA-DS-68-15, July 1968, pp. 81-82. ) 

Reborts 
% of Total 1/ N d e r  

Law v i s i b i l i t y  
Crosswind 
Low ceiling 
Malfunctions 
Landings 

High winds 
IA fog or clouds 
Near air collision 
Last 
Short f i e l d  

'Fuel supply 
Ebgine operations 
Forced landing 
Takeoffs 
Unimproved airport 

Mud or snow 
Darkness 
Weight or loading 
Xnfrequent piloting 
Trees or wires 

Use of radio 
Soft f ie ld and high grass 
D i f f e r e n t  type aircraft 
Preflight operation 
Unavailable pre f l ight  information 

(2) 

338 
2 90 
277 
254 
247 

229 
209 
198 
148 
147 

139 
122 
117 
111 

96 

96 
92 
80 
83 
71 

64 
64 
42 
38 
35 

(3 1 

2a% 
2P 
23 
21 
21 

19 
18 
17 
12 
12 

12 
10 
10 
9 
8 

0 
8 
7 

' ' I  
6 

5 
5 
4 
3 
3 
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1-2 (Continued) 

Improper airspeed 
Stalls or recoveries 
Low altitude maneuvering 
Uninformed 
Steep turns 

Flaps 
Handling of airrJaft 
Holding altitude 
Check l ist  
Slow sgeed flight 

Flight materials lmaps , etc. 
Pontoons or skis 
Slips 

O t h e r  

ReDorts 
Nuaber  % of Total  

(2) (3 1 

30 

26 
23 
21 

2a 

20 
19 
18 
14 
13 

13 
11 
10 

3 
' 2  

2 
2 
2 

2 
2 
2 
1 
1 

1 
1 
1 

136 11 * 

1J T o t a l  = 1,192 
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A critical in-flight event is a situation which is unexpected, 
unplanned, and unanticipated, and is perceived by the pilot 
in command to threaten the safety of the aircraft. The CIFE 
is one which requires pilot judgment beyond routine decision 
making or  pre-programmed decision structure. It may or  
may not involve communication with ATC. The CIFE assumes 
alternative courses of action a re  open to the pilot and some 
finite period of time is available to the pilot to make an assess- 
ment of the situation, enumerate options and make a d Asion. 
The safety of the aircraft depends more on pilot cognitive pro- 
cesses than skilled motor performance. 

For purposes of this research, emphasis was  placed on IFR rated pilots who 

bave sufficient experience to utilize the ATC system when available. 

Many examples of the above description cad be put forth. The following 

illustrates a few of these. 

a)  failure of navigational equipment, 

b)  failure of electrical systems, 

c)  failure of hydraulic systems, 

d) fuel management problems, 

e )  flights into unexpected weather, 

f )  unforecast icing conditions, 

g) engine failure (single and multiengine aircraft), and 

h)  partial pilot incapacitation. 

This resea-ch was directed towards an understanding of: 

a )  the nature of critical in-flight events (CIFE), their causes, anc? 

how they develop over time: 

b) how pilots of different backgrounds might assess and respond to 

such instances; 
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c )  the psychological stress of in-flight events, appropriate coping 

processes, and the modeling of such processes; 

d)  the interaction that exists between air traffic controllers and 

pilots during CIFE 's; and 

e )  how adequate countermeasures can 50 developed from the above 

to minimize the frequency and consequences of CIFE's. 

An explicit description of research objectives and discussion of the scope 

of the project a re  presented in the next section. 
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II. RESEARCH OBJECXVES AND PROJECT SCOPE 

The general objectives of the research were: 

1. To describe and define the scope of the critical in-flight event with 

emphasis on charzcterizing 

a )  event development, 

b) even+ detection, 

c) event assessment, 

d) pilot information requirements, sources, acquisition, and 

interpretation, 

e)  pilot response options, 

f ) pilot decision processes, 

g) decision implementation, and 

h) event outcome. 

2. To develop detailed scenarios from (1) above for use in 

a )  simulators as well as paper and pencil testing for developing 

relationships between pilot performance and background information, 

and 

b) an analysis of pilot reaction, decision, and feedback processes. 

The scenurios a re  viewed as data generating devices for pilot options. 

More specific thrusts of this research, related to the general objectives 

above, were developed on the basis of initial research findings and research 

capabilities. These involved: 

a) emphasis on general aviation IPR pilots in single engine aircraft 
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b) emphasis on the descriptive character of pilot response to 

critical in-flight events 

c )  use of full mission simulation 

d) use of paper and pencil scenarios to study pilot problem diagnostic 

capabilities and destination-diversion decisior! processes 

e )  e.xploration of the relationship between procedural compliance 

and flight crew er rors  using the Ruffell-Smith simulation data. 

The following chapters place major emphasis on: 

1) background activities leading to problem conceptualization 

Chapter III) 

2) development of knowledge tests on system anomalies (Chapter IV) 

3) full missim simulation (Chapter '1) 

4) paper and pencil wen rio tests (Chapter VI), and 

5 )  analysis of the Ruffell-Smith data for procedural compliance 

(Chapter VII) 
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I I T  BACKGROUND 

3.. Literature Revie1 

Initial project activities centered around the development and implementa- 

tion of a comprehensive literature search. Because the objectives of the 

project were rather broad ranged and cross-disciplinary, this search involved 

a number of topic areas. After an extensive review of search materials 

available a master list of key words to be uszd in all literature searches 

was developed. This list was  used for all searches with the exception of 

pscyhology abstracts which used a controlled Vocabulary. This controlled 

vocabulary can be found in The Searches of Psychological Index Terms, pub- 

lished by the American Psychological Association. The follow Lg SOU'I'CIS were 

examined: 

a )  The Ohio State University Mechanized Information Center (OGU-MIC) 

b)  Psychology Abstracts 

c )  FAA Accident Reports 

d)  Transportation Research Information System (TRB) 

e )  National Technical Information Service (NTIS) 

f ) Department of Defeuse sources (see Appendix A )  

g) Aviation Press  Publications, e.  g. , Flying Magazine, Business and 

Commercial Aviation. etc. 

h )  Xational Transportation Safety 9oard (NTSB) Accident ReDorts 

While the literature was replete with "never again" stories, surprisingly 

few documents addressed pilot response to critical in-fl!ght events in 
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sufficient detail to permit pilot response modelling. Indeed, little 

statistical evidence was available on the relative frequency of various types 

of incidents. 

Appendix B is  an annotated bibliography of some of the literature examined. 

In addition, the dissertation by Schofield and the thesis by Flathers detail 

further background sources in this area. 

B. Results of Interviews With Interested Agencies 

A t  the outset of this project the principal investigators met with several 

organizations which had both a vital interest in the problem and expertise in 

pilot behavior. The National Transportation Safety Board (XTSB), The 

Aircraft Chvners ana Pilots Association (AOPA), Nitre Corporation, Airline 

Pilots Association (ALPA), A i r  Transport Association (ATA), National 

Aeronautics and Space Administration Ri.4SA), Federal Aviation Administration 

(FAA), Air Force Office of Scientific Research (AFOSR), and United Airlines 

(TAL) were all visited to provide consultation with their staffs on their per- 

ceptions of the CIFE and to secure whatever data bases were available to 

document the extent and nature of CIFE and any data on related pilot response. 

These agencies also suggested other resources fcr this problem area - either 

published reports, research in progress or names of individuals who could 

provide insight into the CIFE problem. Trip summaries and contacts a r e  

outline 1 in Appe~dices B and C. 

In general, all agencies reported a great interest in the problem and were 

willing to help within their capacities but admitted that the CTFE was largely 
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an unresearched issue. No data Lases on pilot response to CIFE's were 

available. There were, to be sure, many shared experiences, individual 

examples of CIFE's from FAA and NTSB files and unique perceptions from 

those interviewed. For geceral aviation (GA) CIFEs there were little or no 

data available from NTSB, F A A  or NASA/ASEIS files. From discussions 

with these agencies and among the research stklff, several hypotheses o r  

constructs were Iwoposed about the CIFE process such 3s 

1) response latency theory 

3) social interaction in the cockpit 

3) cognitive Etructuring 

4)  pilot workload 

5) detection of vs. rcsponse to CIFE 

6) appraisal of CIFE'S 

7) single channel limitatior\ of the pilot 

9) lack of standard work habits 

9) lack of real world elements in training and testing of pilots 

C. Results of the NASA-ASRS Search 

Early in the research, the project team asked NASA-Ames to perform 

a search of its ASF6 data file. Using key words consistent with their data 

base structure, t'.g. * emergency, pilot decision making, etc. * some two 

dozen narratives were developed and examined. In general, little \ d u e  to 

the project resulted from this search principally because of lack of detatl 

:ibout how the problem devrloprd, how it was diagrlosed, what i\lternnttves 
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were considered and other r e l e v a ,  details, e. g. , weather and alternate 

airports available. Because of the NASA policy on anonymity of the reporter it was 

impossible to trace back an incident to get more information. What would 

have been necessary would have been to have the analyst follow up immediately 

on first  contact using a supplementary data sheet. Because the thrust of the 

research was directed towards the GA pilot and the fact that the majorie of 

incidents reported were air  carriers,  it was decided not to pursue the 

XSRS data file further. 

D. An Initial Conceptual &lode1 

As 3 result of background information, discussions with experts and a 

graduate seminar directed to the various facets of the problem, a preliminary 

model of this process evolved. This is shown in Figure 111-1. This conceptual- 

ization depicts several key aspects of the problem - the detection phase, 

information seeking strategies, workload, use of resources, and pilot 

s t ress ,  decision styles and value systems making up his decision making. 

Ultimately, pilot response was focused upon: 

1) detection of the problem 

2) diagnosis of the cause from the symptoms 

3) generation of viable options 

4) decision making both in terms of problem resolution and 

destination diversion 

3) execution of the decision 

Throughout all five phases, pilot information seeking strategies were studied. 
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.A 1IODEL OF RESPONSE TO -4 CIFE 

Pilot Factors 
(Independent Variables) 

I 

I 

Situational Factors 
(Dependent V ~ s i 8 b l e  = *) 

I 

aircraft I 

Preflight Tasks: weathei Workload 
weight and balance I 

1. workload capability I 

2 .  skill Ferceptual Scanning 
3. alertness 

Preflight (errors) 
Probability & 4 CIFE aircraft systems 

Options (outs) 

Stress Resistance: 
Coping with uncertainty I 

Knowledge of systems - General CIF'E Experience Resources 

I Specific CIFE Infor mat ion ATC ,Checklists 
Seeking FSS, Dec aids 

Experience I 

4 * 

Cover crew 
I Ground Facility 

- Decision Style 4 

1st Decision 
Outcome , 

b 

Value System 

I 
I 

I 

I 

I 

I 
I 

I 

I 

Figure 111-1 
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E. Research Strategy 

Figure Ill-2 depicts the overall strategy undertaken in this research. 

Above the dotted line are the initial background efforts. These included the 

aforementioned visitations, literature review, ASRS search and graduate 

seminar. Prior to the formal research initiation, a graduate project by 

Fox, "Critical In-Flight Responses ", indicated the potential value of using 

paper and pencil scenarios to study pilot decision making. At the same time, 

as part of another Industrial and Systems Engineering ( B E )  course, USAF 

rilots were  surveyed to arrive at candidate scenarios for future simulation 

or  paper and pencil testing. Both of these exercises provided encouraging 

results. 

Below the dashed line are the four major fronts of the project: 

1) the development of knowledge tests 

2) full mission GAT simulations 

3) paper and pencil scenario testing 

4)  the relation of procedural compliance to e r rors  in the Ruffell 

Smith simulation study 

Each of these major fronts is discussed in turn in the chapters which follow. 

A comment on the paper and pencil scenario workshop is in order. This 

was  a mechanism to bring pilots together for a general briefing prior to 

their testing on paper and pencil scenarios. These tests were then conducted 

with individual e.xperimenters. Hence, about ten small group workshops were 

held on different davs. 
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IV. EVALUATION OF SUBJECT KNCWLEDGE 
OF AIRCRAFT SYSTEM ANOMALIES 

The evaluation of subject knowledge of aircraft systems and Le IFR 

operating environmeut was an important element in understanding the ways 

in which pilots respond to CIFE's. The evolution of the final test instrument 

involved a series of pre-tests, development of open form questions and finally 

a closed-form, multiple-choice questionnaire. Contrary to the usual airman 

certification exam question format, the bulk of the items selected here 

emphasized aircraft subsystem operation and trouble-shooting. 

A. ope n Form Survey 

A knowledge survey, 

of a pilot's knowledge of 

or invcntory, was developed to determine the level 

aircraft systems and the IFR operating environment. 

An open-form survey was administered to pilots who were participants in the 

GAT rum. Later a closed-form version was  administered to all subjects in 

the paper and pencil scenarios. The results of the surveys were compared to 

various measures of pilot performance in the simulations to isolate relation- 

ships between pilot knowledge level and measureable aspects of piloting skill. 

The development of the survey followed a three stage process which included 

1) item (question selection and pre-test, 2) construction and test of an open-iorm 

survey, and 3) construction and test of a closed-form (multiple choice) exam. 

The items for the survey were constructed from information in training 

texts, government publications, aircraft operating manuals, and other 

readily available publications. Practice quizzes and examina- 
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tions conimonly used in the certification process placed much emphasis on 

such areas as regulations, weather, navigation, and weight and balance. 

Relatively few items on aircraft subsystem operation or trouble-shooting 

could be found. This is due, in part, to the fact that a modern single engine 

aircraft may have over 25 independent systems, and some of these systems 

map be engineered differently by the various manufacturers. For example, 

while the Pitot-static system and gyro-instrument system designs offered 

by aircraft manufacturers are fairly uniform, other systems such as fuel 

metering and feed devices are often vastly different. Special care was  taken 

to ensure that items selected for the knowledge survey were representative 

of the types of systems pilots could be reasonably expected to encounter in 

their flying careers. 

A total of over 60 items were collected and pre-tested on a small group of 

pilots. Included in this prototype survey were  areas such a s  fuel systems, 

electrical systems, engine systems and operations, cockpit instrumentation, 

weather and the flight environment, and general IFR procedures. The pre-test 

survey items were presented in the form of open-ended questions to which the 

pre-test subjects responded with short, written answers. Four types of 

questions were posed. The first type was a simple, straightforward question 

in which the pilot was asked to define or explain something. In the second tqpe 

of question, given certain symptoms in terms of instrument indications, noises, 

visual inspection, and the like, the pilot was asked to identify the most likely 

cause of those symptoms (Symptom-Cause, or S-C). In the third type of 

question, the pilot was given a specific condition and was asked to identify 
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symptoms that would most likely arise from that condition (Cause-Symptom, o r  

C-S) . In the fourth and final type of question, the pilot was  asked what 

corrective action should be taken if a certain condition was known to exist 

(Cause- Correct ion, or C - C ) . 
The correctness of the responses of the pre-test subjects was not as 

important as the ease with which the subjects understood and responded to 

the questions. The experience gained in the pre-test was  very helpful h 

determining which questions were not useful and should be eliminated. It 

was also helpful in determining the way in which the remaining questions 

should be streamlined to improve clarity. A l l  of the improvements suggested 

by the pre-test were made and the end result w a s  the refined, open-form 

knowledge survey which was  used in conjunction with the GnT simulation 

studies. 

The open form survey, contained in .Appendix D, consisted of 58 questions 

which called for short, written answers. Thirty questions were of the 

straightforward type, 11 were of the C-S type, 9 were of the S-C type, and 

8 were of the C-C type. The open-form survey measured overall pilot h o w -  

ledge, as well as knowledge in the six areas listed in Appendix D. Scoriry 

of the survey was performed with the aid of the answer key also provided in 

Appendix D. Partial credit was awarded for answers which came close to 

those given in the answer key. 
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For evaluation of the paper and pencil simulation tests, pilot knowledge 

about systems w a s  needed. This was accomplished through the use of the 

closed-form knowledge survey given in Appendix E. The survey consisted 

of 20 multiple choice questions. Nine of the questions were of the straight- 

forward type, 6 were of the C-C type, and 5 were of the C-S type. All of the 

questions came from the open form survey and were selected on the basis of 

their ability to discriminate between good pilots and marginal pilots. Some of 

the incorrect responses offered by subjects in the open form survey were used 

as "dummy" alternatives in the closed, multiple-choice form. 

Under the multiple choice format all subjectivity in scoring was removed, 

and the time spent administering and scoring was  greatly reduced. The answer 

key is  given in Appendix E. Scores were provided for the three pilot knowledge 

subscore areas also given in Appendix E ,  as well as  for overall pilot knowledge. 

Results of the closea form survey are  discussed in Chapter I1 covering the 

paper and peiicil simulations . 

B. General Results of the Closed-Form Knowledge Survey 

The closed form knowledge survey was administered to forty oilot-subjects, 

thirty of whom were also participants in the pilot decision-making workshop. 

The rilean total score for the forty subjects was 12.4 with total scores ranging 

from five to seventeen. The maximum possible score was twenty. 

Statistical tests were performed to determine if any relationships existed 

between knowledge survey scores and pilot background variables. The Spearman 

rank coefficient was used as a measure of correlation throughout. A summary 
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of the correlation coefficients between total knowledge survey score and 

pilot background variables appears in Table IV-1. 

Table IV-1 

Total Knowledge Score Spearman Correlation Coefficients 
and Observed Level of Significance (In Parantheses) 

Total Flight Hours .131 ( *  42) 

IFR Hours .002 ( 0  99) 

Single Engine Hours .467 {. 002)* 

Rating .430 (. 006)* 

*means significant correlations at p 4 .05 level 

As seen in Table IV-1, almost no correlation exists between total knowledge 

survey score and total hours or IFR horns. These lack of relationships suggest 

that accruing general flight experience or IFR flight experience does not 

guarantee knowledge will also increase. One possible explanation for this 

observation, however, is that, as pilots accrue more and more flight time, 

they tend to advance to more sophisticated aircraft with sharply different 

operational characteristics. The howledge survey was aimed at the single 

pilot IFR operations common in light aircraft. These two relationships may 

not be as strong, then, because pilots with more flight experience may have 

moved out of the scope of the knowledge survey. 

Substantial positive correlations a re  seen, in Table IV-1, between total 

knowledge survey score, and single engine hours and rating. These two 

relationships lend support to the knowledge survey's validity as a general 

tool to measure knowledge of single-pilot IFR operations and aircraft systems. 
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One would expect increased exposure to single engine operations (more single 

engine hours) would also increase a pilot's knowledge of single engine operations 

(which was the focal point of the knowledge survey). Additionally, as one's 

tested level of competewe increased, knowledge should also increase. 

The knowledge survey was broken into three subcategories: Engine and 

Fuel Systems, Electrical Systems and Cockpit Instrumentation, and Weather 

and IFR operations. They were named Category I (CATSCR l), Category I1 

(CATSCR 2), and Category llI (CATSCR 3), and contain 7, 7, and 6 items, 

respectively. The means and range of s c 0 - 3 ~  for each category for the 

forty subjects are  given in Table IV-2. 

Table IV-2 

Mean Scores and Range of 
Scores for Categories I, n, and III 

mean'% range 
(%of max 

mean possible) low high 

Category I (maximum possible = 7)  4.82 68.9 1 7  

Category II (maximum possible = 7 )  3.750 53.6 2 7  

Category III (maximum possible = 6) 3.850 64.2 0 6  

The same correlation tests were applied to these scores as were per- 

formed on the total knowledge survey score. A summary of the correlation 

coefficients between the three category scores and pilot background variables 

is given in Table IV-3. 
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Table IV-3 

Correlation Coefficients and Observed Level of Sianificance 
Category I, 11, and lII Scores, and 

Background Variables (Levels of Significance In Parantheses) 

Total Flight IF R SE 
Houn Hours Hours Rating 

Catcgory I Score .197 ( -22) ,090 ( -58)  e474 (.002)* 0273 (*09)* 

Category I1 Score -. 115 (.48) 194 ( -23)  184 ( .26) .195 (. 23) 

Category III Score e120 (.46) -a001 (-99) -376 (.017)* -376 (.017)* 

*indicates significant relationships at p 4 . 10 level 

As evident in this table, Category I score (engine and fuJ  systems) is 

positively correlated with single engine hours and ratings, whereas no 

significant correlation exists between Category I scores and total flight time 

or  IFR flight time. These results may be due, again, to the fact that the 

knowledge survey was aimed toward single pilot IFR operations. There a re  

sharp differences in powerplants between the sophisticated airplanes exper- 

ienced pilots are  more likely to fly and the s h p l e r ,  lighter crafts flown in 

single pilot operations. This is particularly true when one considers the fact 

that higher perforrnancc airplanes a re  often powered by turbojets o r  turbo- 

propellers. 

Category III score weather and IFR operations) is positively correlated, 

again, with single engine hours and rating, and uncorrelated with total flight 

time and IFR hours. No correlations were found in any Tase involving Category 11 

(Electrical Systems and Cockpit Instrumentation). 

24 



A summary of individual subject knowledge survey performance, including 

results fr)r each of the three subscores is fomd in the Master DPta Table, 

Table V I 4  in Chapter VI. 
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V. GAT FULL MISSION SCENARIO (FMS) RUNS 

Prior to the development of the final paper and pencil experiments, a 

series of full mission simulation (FMS) experiments were performed. These 

experiments, which a re  described below, provided background for designing 

paper and pencil scenarios and a benchmark which such scenarios couli; be 

matched for a rudimentary cos t/benefits evaluation. 

A. Purpose 

A Singer GAT-1 flight trainer was reconfigured to r 'rve as a flight simu- 

lator for use in "LOFT" type scenarios. These scenarios each involved a 

critical in-flight event imbedded within an otherwise normal simulated IFR 

flight mission. The purpose was to gain an understanding of: 

a)  how pilots of different backgrounds assess and respond to 

such instances: 

b) the psychological stress of in-flight events, appropriate c ciping 

processes, and the modeling of such processes; and 

c) the interaction that exists between air traffic controllers and pilots 

during CIFE's. 

In keeping with the full mission scenario approach, each subject went 

through a pre-flight planning phase involving a complete weather briefing, 

route planning, and filing of fligbt plan. Take-off, climb and enroute phases 

of each scenario began under normal IFR Qperating conditions. Real time 

ATC communications, including background conversatim were used to 
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enhance realism. .A critical event was introduced some twenty to thlrty 

minutes into each simulated flight. 

The conduct of an FMS is outlined in the paragraphs which follow. Com- 

plete operating instructions and detailed supporting material a r e  contsined 

in the IIsster Notebook for GAT Scenarios, a copv of which is srailable L?I 

this projcct 's file at N.AS.4-Anies. 

B. E.\perimental Equipment 

The primary piece of tquipment used in the full mission simulation studies 

is 3 Singcr General Aviation Trainer (GAT- l i  on 3 motion base. Three degrees 

of frtwioni, roll, pitch, :md yaw, arc' provided by the motion base. This 

machiw simulntcxs, both in design and performance: I typical single engine. 

carburcted. fixed pitch prop, ftvrd gear aircraft. The svionics equipment 

includcs dual navigation and communication radios, dual VOR indicators (one 

with glideslope), an :iutomatic dirwtion finder, an audio control p.mel, and a 

thrtlc-light marker beacon receiver. 

Nodifications have k e n  made to the standard GAT cockpit. .4 t rms -  

ponder and a digital clock have becn added to the instrument panel. .4 fuel 

sclector switch has been installed to the loft of the pilot's scat. A lapel 

microphone has been added to pick up the pilot's communications and cockpit 

sounds. Two floodlights and a c1osr.d circult television camera have been 

mmntcd over the pilot's rtght shoulder to view the instrument panel. 

Extcwvil moaificattons have also been ninde to facilitate the experiment. 

The windows of the- G-\T h:ive bccn cowrcd with a one-way refltwive f i l m  
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(Scotchtint) so that the pilot can be observed during the flight without his 

knowledge. A display for showing which fuel tank is active has been installeG, 

as well as external controls for the ammeter, panel light intensity, and for 

power (rpm) reduction. These are all new additions to the standard GAT 

hardware. 

The e.xperimenter has the capability to control the operational status of 

some of the GAT systems, and to determine the values of key parameters. 

The following can be rendered inoperative: attitude gyro, directional gyro, 

altimeter , airspeed indicator, turn coordinator , vertical speed indicator, 

VOR/LOC indicators, automatic direction finder indicator , glideslope , 

and engine. Additionally, oil pressure, oil temperature, cylinder head 

temperature, fuel level for each tank, engine sound volume, gross weight, 

center of gravity, outside air temperature, rough air  magnitude, barometric 

pressure, and wind direction and velocity a re  subject to continuous control. 

An S-Y plotter connected to the GAT tracks the progress of the flight on an 

enroute low altitude chart, and provides the air traffic controller with the 

equivalent of radar flight monitoring. 

Communication channels have been wired to permit two-way communica- 

tion between the Jumpsedand the ATC monitoring station. It allows pilot 

activities such 3s frequency changes to be relayed to ATC by the Jumpseat 

observer a s  augmentation to video monitor viewing. It also provides for 

ATC cueing of Jumpseat for changes in environmental GAT parameters and 

introduction of systems failures. 

XJumpseat refers to an experimenter who rides outside the cockpit but who 
can both observe pilot cockpit behavior and also initiate system failures. 

28 



The equipment described above helps to provide fidelity and realism for 

the subject, adequate experimental control of the flight environment, and 

audio-visual recordhg of expsrimental flight data. 

C. FMS Procedures 

The following materials support a GAT scenario experimental session 

from initial contact of subject to raw data collection. Typically, three 

experimenters are required to execute a session. One (Director) handles 

subject contact before and after the simulated flight. Another acts as 

ATC during the run, and a third sits in the GAT Jumpseat to control 

cockpit conditions and to call out instrument status. The generai pro- 

cedure for a GAT scenario experimental session follows: 

l j  Subject contacted, explanation of study read, appointment is  

made, aircraft manual and subject background data form are 

mailed to Subject. 

2) Subject arrives and is met by Director. Subject is taken to a 

briefing room, where he initiates flight planning. 

3) Meanwhile, ATC prepares control station and Jumpseat pre- 

pares GAT with detailed checklists. 

4)  Director prepares GAT room conditions and sees that all 

checklists a re  completed. 

5) When Subject finishes planning, Director escorts him to GAT 

room and familiarizes Subject with GAT cockpit. 

6) Director has Subject start  the engine and closes cocb i t  door. 
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Jumpseat controls engine status gauges, Winds aloft, and 

various other environmental conditions as cued by ATC or 

Director. Jumpseat also monitors and reads instruments that 

are difficult to read from the video camera. This aids in later 

review of the video tape and also aids ATC in determining which 

comm frequency has been selected. 

Director fills out data form f w  the particular run iacluding 

the clock times for significant events to aid subsequent video 

tape reviews. H e  also obtains Subject performance judgments 

from ATC and Jumpsear at several points in the scenario. 

10) After  Subject lands the aircraft, Director meets Subject in cock- 

pit and takes Subject to debriefing room. 

11) Subject discusses the flight with Director, answering specific 

questions concerning the CIFE. The debriefing is recorded on 

audio tape. 

12) Meanwhile, ATC and Jumpseat shutdown GAT and supporting 

hardware, a d  document and store raw data. 

D. FJIS Scenarios 

Three separate full mission scenarios have been created. Each sce2ario 

h a s  accompanying support material in terms of charts, e.xperimenter check- 

lists, ATC scripts, pre-recorded background communication tapes and data 

forms. Samples of these support materials a re  contained in the Master Notebook. 
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Each of the three scenarios features a different type of critical in-flight 

event. Scenario 1 involves a loss of fuel from one tank. Full power is 

recoverable by switching tanks at which time the pilot must decide on one of 

several destination alternatives. Scenario 2 involves a partial power failure. 

No actions are available to restore full power to the aircraft. The pilot must 

decide on one of several destination alternatives or an emergency landing. 

Scenario 3 involves a partial navigation system failure during an ILS 

approach. The pilot must recognize the failure and select an appropriate 

alternate approach procedure and/or airport. Al l  scenarios feature weather 

near IFR minimums and a mix of mountainous, flat, and seacoast terrain. 

Details of each scenario appear below. 

Scenario 1 

The objective of this scenario is to reveal how a pilot responds to inadver- 

tent loss of fuel in flight, resulting from the over-wing siphoning of fuel through 

an improperly sealed filler opening. Of particular interest are,  1) his actions 

to restore engine power when the fuel supply from the tank in use is depleted, 

2) his decision on where to land in view of the unanticipated reduction of 

remaining fuel and 3) his aircraft control performance prior to and aft I the 

CIFE. 

Each subject is instructed to prepare and file an IFR flight plan for a night 

flight from Seaport Beach to hlountaindale airport. The weather at  the point 

of departure and along the route of flight is INC (ceilings a re  less than 1000 

feet and visibilities are  less than three miles). At the destination airport 
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the weather is marginal VMC. Seaport Beach is on the coast; Mountain- 

dale is surrounded by mountainous terrain. 

After takeoff the flight proceeds along a predetermined route a s  specified 

in the original clearance (radar vectors to the Seaport 259" radial to Ranch 

intersection, Victor 97 to Goathill VOR, direct). As the flight continues 

along this route, the pilot is instructed to contact the appropriate controlling 

facilities. The fuel supply in the tank in use is reduced gradually, but at a 

rate much faster than that of normal consumption. When the flight reaches 

a certain point, the fuel supply in the tank being used is depleted, and the 

engine sputters and dies. A t  the time of the engine failure, the flight is in 

instrument conditions, experiencing moderate turbulence, and not in radar 

contact. 

The only action the pilot can take to regain engine power is to switch 

fuel tanks. In the course of solving thiL 7 -blem, the pilot must set  

priorities concerning the activities he deems appropriate. Once the 

pilot switches tanks, and engine power is restored, normal operations 

can be continued. However, the flight now has half the original fuel. In 

view of this new limitation, the pilot must decide on whether to continue or 

to divert to an alternate. There a re  three alternatives from which the pilot 

must choose: he can continue on to his destination, 13nd at a closer air- 

port, o r  return to the point of departure. The flight has fuel sufficient 

to fly to and land at any of the alternatives, but his choice is complicated 

by varying weather conditions at the different airports, the different distances 

and times to fly to the airports, and the pilot's perception of the problem. 
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Scenario 2 

This scenario 

a broken baffle in 

simulates the reduction of available engine power due to 

the muffler during a cross-country IFR flight. 

The mission is to fly from Seaport Beach to Mountaindale. Immediately 

prior to takeoff, the pilot is cleared along a route approximately parallel 

to the one which he had filed. A t  the time af departure the Seaport Beach 

weather is lhiC (ceiling is 1100 feet and visibility is two miles in rain, fog, 

drizzle) and the Mountaindale weather is marginal WdC. 

As the flight progresses, moderate turbulence is encountered near 

Singer intersection with a tailwind at thirty knots. When the flight pro- 

ceeds past Thermal intersection, engine power is linearly decreased to 

1500 rpm over a period of three minutes. This is accompanied by tachometer 

i n c  ications and a decrease in engine sound. SimtJtaneously cylinder head and 

oil temperature a re  increased to maximum level. The power level is not 

sufficient to maintain the enroute altitude, so a desced begins as the power 

loss continues. The problem consists of inadequate power and rising terrain 

while out of radar contact in instrument conditions. 

At this point the available alternatives are: 1) continue to Mountaindale, 

2 )  return to Seaport Beach, 3) land on the immediate terrain, 4)  land a t .  

Singer, 5 )  land at Wind Falls, 6 )  land at Link County, and 7 )  land at Pelton 

Naval Air Station. A major decision is whether or not to declare an emer- 

gency, especially since the assigned altitude cannot be mail ‘sined. Typically 

the subjects proceed to Mountdadale or return to Seaport Beach. 
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Scenario 3 

The purposes of this scenario are 1) to reveal how a pilot, without the 

aid of warning lights or flags, determines that an essential part of his 

approach navigation equipment (localizer) has failed, and 2) to reveal what 

decisions and actions he makes to complete the flight in view of the aircraft's 

new status. The pilot is instructed to depart Mountaindale airport, to con- 

duct two ILS approaches at hIountaindale, and to land at Mountaindale after 

the second approach. His flight plan specifies the route of flight to be "via 

radar vectors". The local weather conditions during departure and the two 

subsequent instrument approaches a re  "ceiling 509 feet overcast, visibility 

two miles in rain and fog, wind from the east at ten knots. " 

After takeoff the pilot is vectored dong a predetermined route to inter- 

cept the localizer course for the runway five I I S  approximately five miles 

from the outer marker. After completion of the first approach, the pilot 

is vectored around to intercept the localizer for his second, and final 

approach. As the localizer needle sweeps to the center position during 

initixl interception, it is rendered inoperative. (In this mode the localizer 

3e:..d\e remains idle in the center position with a 'TO" indication.) At the 

t i n e  r t  fsilure, the flight is in instrument conditions, in radar contact, and 

experiencing light turbulence. 

The pilot can use ATC position information, A D F  crosschecks, or note 

that L e  needle is stationary to determine the localizer needle has failed. 

t'pon confirming its failure, the pilot then must decide what to do next. He 
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could conduct an NDB approach, a VOR approach, or divert to another air- 

port. Of these alternatives, the VOR approach is the only feasible one. 

E. Subjects 

Twelve subjects were selected for the FMS experiments. Four were used 

in each of the three scenarios. Their ages ranged from 21 to 56 years old. 

Although all of the subjects were instrument rated, their licenses covered 

the spectrum from Private to ATP. Six of the twelve held CFI ratings and 

five held turbine ratings. In terms of their primary flying activities they were 

equally divided (six each) into pleasure and professional flying groups. Their 

total flying hours logged ranged from 270 to 8800 hours. 

these data. 

Table V-1 
FMS Subject Background 

Scenario Subject 

1 1 
2 

3 
c 

4 

2 5 

6 
7 

8 

3 9 

10 
11 

l? 

Age 

36 
56 

42 
46 

23 

34 
34 

30 

31 

22 
21 

21 

Licenses 

Pvt. 
Comm/ 

CFI 
Comm 
ATP 

Comm/ 
CFI 

Comm 
Comm/ 
C FI 

Pvt . 
Comm/ 

CFI 
Pvt. 
Comm/ 

CFI 
Comm/ 
CFI 

35 

Total Hours 

420 
5000 

1200 
8800 

1550 

5000 
3000 

300 

17SO 

27 0 
4ao 

600 

‘table V- 1 summarizes 

Type of Flying 

Pleasure 
Pleasure 

Business 
Business 

Professional 

Pleasure 
P leasu reh i l .  

Pleasure 

Professional 

Pleasure 
Professional 

Profess tonal 



As noted in Table V-1 an attempt was made to obtain a mix of exper- 

ience and ratings for each of the test scenarios. All subjects were unpaid 

volunteers from the Columbus, Ohio area. 

F. Data Collection 

As noted in Figure V 1, three major types of performance data were 

collected for each FMS run. 

1) 'Stick and rudder" performance, i.e., basic control of heading, 

altitude, and airspeed 

2) Communications 

3) Response to the CIFE 

Stick and rudder performance was evaluated both objectively and sub- 

jectively. Subjective ratings ou a scale of one to seven were given for navi- 

gation skills and attitude control by each of the three experimenters present 

during a run. (All experimenters were qualified pilots as wel l  as researchers. ) 

Subjective rating averages for both navigation and attitude control skills ranged 

from a low of 1.2 to a high of 6.7. There appeared to be a high correlation 

between the two ratings, i.e., a subject with good navigation skills also 

exhibited good attitude control skills a s  noted in Figure V-2. Only ten subjects 

were rated due to unscheduled equipment malfunction during a portion of two 

runs. 

A more objective indication of stick and rudder performance was obtained 

from time traces of altitude, airspeed, and heading deviations covering the 

period immediately surrounding the intyoduction of the CIFE. These data 
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were obtained by analyzing video tapes and coordinated audio tracks for 

each FMS run. Samples of each data are contaiued in Figures V-3 and V-4. 

Plots for all subjects are contained in Appendix F. 

Communication skills were also evaluated both subjectively and 

objectively. Each observer rated each subject on a scale of one to seven. 

Average scores here ranged from a low of 2.0 to a high of 6.3. In addition 

to those ratings, which were made at the time of the experiment, complete 

transcripts of communications were prepared after the fact from the audio 

tapes. A portion of one such transcript for the second scenario around the 

time of the CIFE has been reproduced in Figure V- >. These transcripts per- 

mitted a detailed analysis of interactions between pilot and controller as well 

as an indication of the information search by subjects. 

The third indication of performance was the actual decision making 

response of subjects when faced with a CIFE. A standard data sheet was 

used to summarize the Lbserved behavior of each subject. Problem detection 

and diagnosis as well as decislons and actions were noted (see Figure V-6). 

The information used to complete these sheets was obtained by studying 

the video tapes, consulting observers' data sheets and from a tlorough 

(tape recorded) debriefing of each subject after his FMS run. Observed 

stress was a subjective estimate (scale one to ten) by the experimenters. 

Pilot criticality estimates were made by the subjects (scale one to ten) and 

were intended to indicate the degree of criticality each placed on the CIFE. 

Flying time estimates were made by the subjects who were asked how long 
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15.59 
15 . 71 
16.28 

16.40 
16 -71  

16.81 
16 . 96 
17-06  

17.17 
1 9 - 2 0  

19.33 
19-45 
19-52 
19-74 
19-84  
20.48 
20.60 
20-63 
2 0  73 
20.81  
21.96 
22  -07  
22.80 

22-98 
23 -05  

23.22 

23.51 
23-59 
23.65 

23. 31. 

23.85 
24.07 

24.31 
24.40 
24.82 

25.10 

25.41 

C: Japan A i r  231, c o n t a c t  E a s t  Bay Cen te r ,  132.15 heading. 
B: Japan A i r  231 t o  132.15, good day. 
C :  Uh, one  n i n e r  t w o  golf papa, roger ,  ma in ta in  6000. 
( u n i n t e l l i g i b l e ) .  
P: One n i n e r  t w o  golf papa, roger, ma in ta in  6000- 
P: Center ,  Noveniber one  n i n e r  go l f  papa r e p o r t i n g  Thermal 
a t  t h i s  t i m e .  
C: -0 golf pop's a t  mermal  i n t e r s e c t i o n .  
B: East  Bay C a n t e r ,  United 694 cl imbing to one-two-%,ro. 
C :  United 694, r a d a r  c o n t a c t ,  climb u n r e s t r i c t e d  to f l i g h t  
l e v e l  three-seven-zero.  
B: Unres t r i c t ed  to three-seven-zero,  United 694. 
C :  Uh, one  n i n e r  t w o  golf papa, r ada r  c o n t a c t ,  uh ,  
( u n i n t e l l i g i b l e )  t w o  miles n o r t h  of Thelma1 i n t e r s e c t i o n .  
P: Uh. roger, one n i n e r  t w o  golf papa. 
C :  Answer golf papa, you can expect, uh, 8000 i n  ten m i l e s .  
P: !bo golf papa, roger. 
C: Xing A i r e  90 Fox H o t e l ,  c o n t a c t  Seaport A p p r o a c h  119-6 
B: 119.6 for 90 Fox H o t e l .  
B: East Bay C e n t e r ,  Centurion 5343 F o x t r o t  c l i m b i n g  t.0 .7000. 
C :  43 Foxtrot, E a s t  Bay Center ,  i d e n t .  
B: 43 F o x t r o t ,  roger. 
C:  43 F o x t r o t ,  r a d a r  c o n t a c t ,  proceed on course. 
8: 43 F o x t r o t ,  on course ,  roger. 
C :  Pacer 62,  c o n t a c t  Pe l ton  approach 126.2. 
B: Pacer 62 to 126.2, goad day. 
B: Center ,  t h i s  is Baron 3622 Tango. H a s  anyone reported 
tu rbulznce  on v e c t o r  two-twenty-two t o  the nor thwes t  here? 
C:  22 Tango, t ha t ' s  nega t ive ,  sir; 
B: We're in moderate tu rbu lence  a t  12 ,000 ,  and p i c k i n g  up  
mixed ice. Any chance of o n e  four thousand for 2 2  Tango? 
C:  Baron 3622 Tango, c l i m b  and main ta in  o n e ' f o u r  tiJousand. 
B: 22 Tango l e a v i n g  12,000 502 one four thousand. 
F: Center ,  November one n i n e  two golf papa. 
C: One n i n e r  t w o  golf papa, go ahead, sir- 
P: Okay, roge r  sir, exper ienc ing  ,uh,  d i f f i c u l t i e s  w i t h  
my engine. I'm l o s i n g  RPM and r e q u e s t ,  uh, immediate d e s c e n t  
t o  the n e a r e s t  airport ,  
C :  One n i n e r  two golf pap, uh, stand by. 
C:  Two golf pop', uh, a l l  the airports i n  the v i c i n i t y  are 
IFR. Y o u ' r e  c u r r e n t l y ,  uh, five miles nor thwes t  of Thermal. 
P: u h 8  roger, w h a t ' s ,  uh, w h a t ' s  t h a t  weather  a t  Link? 
C :  Okay, uh,  s t and  by. IIll ha>e it f o r  you i n  j u s t  a second. 
C :  Yeah, two-go l f  pop, rih,  Link weather a t  zero.300. Uh, 
500 s c a t t e r e d  measured 800 overcas t  t w o  miles r a i n  and fog. 
Uh, wind one six zero a t  t e n ,  a l t i m e t e r  t w o  n i n e r  p o i n t  
four  five. 
P: Uh, roger, and Center  be advised,  uh, one n i n e r  t w o  
golf  papa is, uh, l o s i n g  a l t i t u d e  a t  t h i s  t i m e ,  unab le  t o  
maintain a l t i t u d e ,  and RPM is dropping off. Uh, r e q u e s t  
vectors for the clearest weather possible you can f i n d .  
I'm gonna have t o  be s e t t i n g  it down, 
C: Uh, t w o  golf papa, understand ( u n i n t e l l i g i b l e ) .  U n a b l e  t o  
maintain a l t i t u d e ,  r e q u e s t i n g  vectors. All airports i n  the 

 hank-you, sir. 

- 
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Figure V-6. Scenario 1 - CIFE Response 
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Figure V-7. Decision Factors Rating 
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they thought they could continue to fly after the CIFE. The rest of the data 

sheet entries were filled by experimental observation or subject statement. 

In an attempt to probe their personal rationale, each subject was also 

asked to complete a rating form covering some 2 1  separate factors which 

may have influenced his decision in the face of the CIFE. Each factor was  

rated by the subject on a scale of one tq seven. (Ratings for Scenario 1 are 

shown in Figure V-7. ) 

The final piece of information collected was the test score from an open- 

form knowledge survey. This survey was used as a pilot study to help develop 

the closed-fmm knowledge survey used with the paper and pencil scenarios. 

A l l  subjects for scenarios one and two also participated in the paper and 

pencil tests. They were identified in the master data sheet with "1" in the 

GAT column. Complete data summary sheets for all three scenarios are 

contained in Appendix F. 

G. Performance Evaluation 

Because of the small sample size and differences across scenarios, 

it was difficult to develop solid statistical information concerning pilot per- 

formance in such full. mission simulation studies. However, by analyzing 

the data mentioned above, it became apparent that the subjects in these 

e.xperimmts possessed 3 wide range of cockpit management styles and skill 

levels. Although difficult to quantify, "good performance" was easily recog- 

nized by both on-site observers of the FRIS runs and others who examined 

the various data collected from those runs. The elements of "good performance" 

inc luded : 

45 



1) professional use of the radio 

2) precise heading and altitude control 

3) constant awareness of ihe aircraft position along its 

intended route 

4) prompt, but not necessarily instant, response tc 'he onset of the 

CIFE (detection) 

5) systematic procedure for trouble-shooting 

6) diversion decisions which allowed for further uncertainties 

Evidence supporting each of these stx characteristics of good performance 

can be found in Figures V-2 to V-7 above. For example, consider Figures V-3 

and V-4 which depict what appear to be good and poor stick and rudder perform- 

ances. The time traces for subject 4 exhibit very small Enplanned deviations 

in airspeed, altitude and heading both before and after the onset of the CIFE 

(loss of fuel cap). Subject 3, on the other hand, demonstrates a somewhat 

unstable control of these three flight parameters even before the onset of the 

CIFE. Furthermore, during and after the CIFE , his airspeed, altitude and 

heading excursions appear to increase in both frequency and amplitude which 

may indicate that he was loaded beyond his ability to cope wtth the problem at 

hand. Coincidentally, it is also easy to find evidence that subject 4's per- 

iormance in each of the six elements listed above was generally superior to 

tb it of subject 3. Furthermore, there is supporting evidence that the "good 

performers" tend to score higher on both forms of the knowledge survey than 

do the "poor performers". 
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Since much of the evidence of FMS performance is anecdotal, a brief 

narrative description of each subject's actions and their characteristics 

has been prepared. T?ese narratives are contained in Appendix F. These 

narratives include comments on each subject's background, personal char- 

acteristics, axxi management style. They are perhaps the richest information 

source for gaining insights into how these twelve subjects made use of 

available resources in the face of critical In-flight events. 

H. FMS Conclusions 

The sample was too small to provide anything other than some initial 

hypotheses concerning pilot performance in such a full-mission setting. 

However, the following tendencies were noted: 

1) Cockpit management style varies widely among pilots. For 

example, some are extremely self-reliant, others want 

immediate and extensive help from ATC while still others 

make the decision making process a joint effort with ATC. 

2)  Good stick and rudder pilots seem to have excess capability 

and maintain good stick and rudder performance during and 

after the CIFE . More marginal stick and rudder pilots, on 

the other hand, show increased frequency and amplitude of 

heading and altitude excursions, and experience communication 

difficulties in the face af a CIFE. 
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3) Pilots who score well on the knowledge test instruments 

tend to perform well in problem diagnosis and decision 

making. (GAT subject performance on the paper and pencil 

tests are discussed in Section VI-L. ) 

Froa the observations of the experimenters and comments made by 

participating subjects, it appears that such a full mission simulation exer- 

cise, coupled with an appropriate knowledge survey and debriefing, could 

be a valuable tool for recurrent training of IFR pilots. 
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VI. PAPER ANI2 PENCIL SCENARIO TESTS 

The G A T  FMS scenarios were extremely valuable in gaining a better 

understanding of how pilots make decisions in the face of CIFE's. However, 

they were very expensive to run, in terms of equipment, subject and exper& 

imenter time, and the data was difficult to analyze in objective fashion. The 

paper and pencil scenario concept was developed to provide a more econom- 

ical way to study the CIFE phenomenon and to reduce the data collection and 

analysis problems inherent with FMS experiments. 

A. Background 

The paper and pencil (PIP) concept was tested in two different ways prior 

to full-scale implemantation. First ,  two pilots, both on the aviation faculty 

at The Ohio State University and considered to be experts in their field, 

evaluated several G A T  subjects' decisions on two of the three G A T  scenarios. 

The two experts then made their o m  diagnoses and decisions on the third. 

From these sessions it became clear that pilots could diagnose problems and 

make diversion decisions in a PIP format. Furthermore, the expert pilots 

found the tasks more realistic when they injected themselves into the 

scenario, rather than playing the role of observer. 

A second P/P format pre-test w a s  run with a local aircraft mechanic who 

is widely respected as  an expert. The purpose of this exercise was to determine 

if someone could diagnose a mechanical failure in an interview situation. The 

mechanic was given the initial symptoms to the problem and was asked to arrive 

at an explanation of the cause. He asked questions about the status of various 
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indicators and hypothesized aloud as he systematically eliminxted potential 

causes. The interviewer provided readings from instruments and answers 

to sundry status inquiries verbally. The mechanic had no trouble diagnosing 

the problem in the interview format. These results suggested many of the 

techniques used in the full-scale study. A transcript of part of that interview 

is contained in Appendix K. 

In order to facilitate analysis and to eliminate interactions, it was decided 

to break the paper and pencil testing into two distinct elements; one set of 

scenarios directed toward problem diagnosis and a second set directed toward 

pilot decision making based upon a common diagnosis of the problem. 

The diagnosis scenarios were conceived to meet several important criteria: 

a)  a system or component failure that would be nondeteriorating over time, 

b) insoluble (at least while fn the sir), but identifiable, c )  precipitated by com- 

ponent failure or weather conditions, and d) important enough to require a 

subsequent diversion decision. There also had to be enough evidence within the 

available information to unambiguously identify the cause of the problem. 

Once the four problems were selected for use, the concomitant symptoms 

and instrument readings were verified with the expert airplane mechanic 

referred to earlier. The given symptoms for the problems were selected to 

lead the subject in the general correct diagnostic direction, but were insufficient 

for trivial solution. The four scenarios selected involved: 1) an oil leak at 

the oil pressure gauge line, 2) a vacuum pump failure, 3) a magneto drive 

gear failure, and 4)  a frozen static port. The diversion scenario8 designed to 

illuminate a pllots decision making strategies are discussed in Section E below. 
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Be The Testing Procedure 

The procedure used in the paper and pencil scenario (PPS) testing required 

about ninety minutes. The period was used for four major data collection inputs : 

a) Biographical Data (see Appendix H) 

b) Closed-Form Knowledge Test (See Chapter IV) 

c )  Diagnostic Performance on Four Different Scenarios 

d) A Destination-Decision Problem Dealing With Information Seeking 

Strategies 

These will be discussed in detail in the following sections. 

Announcements were posted at local flying clubs and fixed base operators 

(FBOs) to attract volunteer subjects from the flying community. Interested 

IFR rated pilots called in for details and were scheduled for one of several 

two-hour sessions. In addition, qualified pilots from The Ohio State University 

and local communities were called by telephone and invited to participate. 

Each session proceeded as follows: Participants gathered in a large con- 

ference room. Af ter  a brief introduction by one of the principal investigators, 

subjects filled out the biographical forms and took a closed-form knowledge 

survey. A briefing statement covering scenario weather, airspace and the 

airplane to be 'Tlown" was given the subjects while they looked at enroute 

charts and weather maps (see '.Qpendix H). The subjects then went individually 

to separate rooms with an experimenter. Here, they went through the problem 

diagnosis and diversion-decision excercises for about one hottr. 

The instructions were read to the subjects (see Appendix H) which explained 

how the four problem diagnosis scenarios would be run. For each problem 
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diagnosis scenar!o, a brief mission introduction was read, identifying area 

weather, flight origin and destinatioband referring to a low altitude enrouts 

chart with the airports highlighted, Following the introduction, symptoms 

for the problem were given (e.g. "After twenty minutes of mutine flying you 

notice the smell of hot engine oil"). A t  this point the subject was signalled 

to begin his diagnosis by the question,'What would you do?". A stop-watch 

was started when the subject began his information search, allowing four 

minutes for completion. 

While referring to a modified diagram of the Piper Arrow instrument 

panel, subjects began to ask the exyerimenter for pieces of information which 

could be collected by the pilot if he were actually in the cockpit of a Fiper 

Arrow. In addition to readings from flight instruments, engine gauges and 

navigatiodcommunicat ion radios, the subject could query the experimenter 

for information concerning structural ice formation, noise, cabin conditions. 

status of the cabin interior, and system response to control settings 

for throttle, mixture, RPM,  fuel selector, etc. When queried, the experi- 

menter looked up the information on two sheets of paper which followed a 

standard format. After finding the requested information and telling the 

subject, the experimenter then noted the item with a number on the sheet. 

The n u m k r s  denoted the sequence of queries such that the order cc,ld be 

recoiistructed. A third sheet was available for noting hypotheses of potential 

causes mentioned by the subject during the information search. Their position 

in the sequence was also noted. 
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The clock was stopped when the subject indicated that he had discovered the 

cause of the problem. If the four minutes ran out, the suoject was asked to 

make a best guess ao to the problem's source. The time taken was recorded 

and the subjecc was asked how long he thought the plane wotlld fly with such a 

problem. He was  then asked to judge the criticality of the problem as he had 

diagnosed it, on a scale of one to seven. An explanation of the cause of the 

problem was &en read to the subject and the final two e s tha t e s  were repeated. 

This procedure was repeated for four different scenprios and took aboui 

25 minutes to complete. 

Forty volunteer subjects participated in the PIP scenario study. A l l  

but one were instrument-rated and with experience ranging from 163 tc, 

19,400 total flying hours. Nineteen had commercial licenses and twelve had 

A i r  Transport ratings. Eight of the subjects had participated earlier in the 

GAT-1 study. Subject background data is shun; in Table VI-1. Figures 

VI-1 to VI-3 depict the flight experience of the subjects. Table 'VI-2 summarizes 

subject data for background data by frequency and percent. Figure VI-4 depicts 

the subjects scores on the closed-form of the knowledge test. It is wort'. 

noting that the scores were surprisingly low considering the fact that the 

mea3 number of hours experience was 3823 hours. 

C. Pilot Background Data and Diagnostic Data Collection 

Pilot background data w c e  coded into seven vaiables. The fc.a continuous 

numeric variables were: score on thc knowledge survey (0-20), !?:a1 i!pi?g 

hours, total single-engine hours, and total IFR (inc!udky nctuzl, &it:: - 
lated and time flown under IFR) hours. 7%. 'lscrete variables were: 
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Table VI-2 

Frequency Analysts of M o t  Background 

Frequency Percent 
Rating: 

Private 
Commercial 
Air Transport 

Training: 

Military 
civilian 

Most Frequent Flying: 

Airline 
GA Commercial 
Business 
Military 
Pleasure 

9 22.5 
IS 47.5 
12 30.0 

10 25.0 
30 75.0 

2 
12 
11 
6 
9 

5.0 
30.0 
27.5 
15.0 
22.5 



rating (private, commercial, and ATP), primary flight training (military o r  

civilian) and the most frequent type of flying (airline, GA comm, busiwss, 

military, and pleasure). 

Diagnosis scenario performance was coded into eight numeric variables 

for each subject on each scenario. These were: 

- I 

TT - 

UT - 
C - 

Z 

E 

CORIXQ - 

31 - 

CB 

CA - 

- 
- 

CNTRL - 

number of inquiries or  aontrol actions 

total traaks (lines of coherent questioning) 

unique tracks (tracks not repeated) 

correctness of final diagnosis (0-5) 

correctness/total tracks 

efficiency = 25-2 x (minutes required) - 1-2 
correctness/total inquiries 

meritqC x E )  

criticality estimate before solution given 

criticality estimate after solution given 

number of control actions taken 

The totals for these eight variables, summed across the fdur scenarios were 

also calculated and named as variables: 

TOTINQ - I1 + I2 + I3 -t I4 

TOTTWKS - T T l f  TT2 * TT3 * TT4 

TOTUTRKS - UT1 + UT2 * UT3 + UT4 

TOTCOR - C1 C2 * C3 + C? 

ZT - TOTCOR/TOTTRAKS 

TDI'EFF - El +. E2 + E3 - E4 
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CORINQT - TOTCOR/TOTINQ 

TOTMERIT - M 1 +  M2 + h13 + M4 

TCRITBEF - CB1+ CB2 + CB3 + CB4 

TCRITAFT - CA1+ CA2 + CA3 + CA4 

See the Glossary, Table VI-3. The diagnostic data, knowledge scores, 

pilot background data and decision data (see Section E below) were  compiled 

and used in the total analysis. 

D. Diagnostic Performance 

Means and standard deviations for all performance variables are listed 

in Table VI-4. Comprehensive scores of total correct and total merit a r e  

shown as  percentage distributions in Figures VI-5 and VI-6. The total correct 

distribution appears somewhat negatively skewed, while that for total merit 

appears to be normal. 

Group performance on the four scenarios improved in terms of correctness 

snd merit with the order of presentation, although all four problems were 

judged to be equally difficult to diagnose. This fact demonstrates some 

learning and strategy development by the subjects. 

When the pilot sample is broken down by rating, several differences emerge 

on various diagncii. : -?rformance dimensions (see Table VI-5). Total correct 

and total merit  scores increase as the level of certification goes up (Pvt., 

Comm., ATP) consistent with -unventional wisdom. Performance on scenario 1, 

(the oil leak) seems to run c o u t e r  to presumed knowledge by the higher certifi- 

cate holders. However, scenario 2 (vacuum pump failure) and 3 (magneto 
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Table VI-3 
Glossarv 

1. 

2. 

3. 

4. 

5.  

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13 

14. 

15. 

16. 

AGE: Age of the subject - categorized into intervals: 
1) age C 30 yrs.  
2) 30 yrs .  -L age 
3) age > 50 yrs. 

50 yrs. 

AIRPORTS: A i r p o r t s  the pilot was willing to pass to locate proper repair 
facilities. 

AP: Variable for airports used in computer runs valued (0 )  if airports 5 2 
and (1) if airports > 2 .  

APP: Approach attribute of an airport. Includes ILS vs. NDB approach. 

ATC: A i r  Traffic Control attribute of an airport (presence of radar). 

8-4pp: Pilots importance assessment of approach attribute of an airport. 

BATC: Pilots importance assesement of an air traffic control attribute of 
an airport. 

: Pilots importance assessment of time. BTIM 

+;x: Pilots importance assessment of weather. 

C1: Correctness score on Scenario If1 (possible correct: 0-5). 

C2: Correctness score on Scenario #2 (possible correct: 0-5). 

C3: Correctness score on Scenario #3 (possible correct: 0-5). 

C4: Correctness score on Scenario #4 (possible correct: 0-5). 

CA1: Subjective criticality estimate of event in Scenario #l after being pro- 
vided with the answer (scale 1-7; l'lowest criticality). 

CA2: Subjective criticality estimate of event in Scenario #2 after being pro- 
vided with the answer (scale 1-7; 1'Iowest criticality). 

CA3: Subjective criticality estimate of event in Scenario R3 after being pro- 
vided with the answer (scale 1-7; l'lowest criticality). 
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17. 

18 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26 

27 

28. 

29 

30. 

31. 

CA4: Subjective criticality estimate of event in Scenario X4 after being 
provided with the answer (scale 1-7; l=lowest criticality). 

CATSCR1: First category score on knowledge survey - knowledge sub- 
score for engine and fuel systems (possible correct: 0-7). 

CATSCRB: Second category score on knowledge survey - knowledge sub- 
score for electrical systems and cockpit instrumentation 
(possible correct: 0-7). 

CATSCR3: Third category score on knowledge survey - knowledge sub- 
score for weather and IFR operations (possible correct: 0-6). 

CB1: Subjective criticality estimate of event in Scenario #1 before I: eing 
provided with the answer (scale 1-7; l'lowest criticality). 

CB2: Subjective criticality estimate of event in Scenario #2 before being 
provided with the answer (scale i-7; l'lowest criticality). 

CB3: Subjective criticality estimate of event in Scenario #3 before being 
provided with the acswer (scale 1-7; l=lowest criticality). 

CB4: Subjective criticality estimate of event in Scenario #4 before being 
provided with the answer (scale 1-7; l=l>west criticality). 

CNTRL1: Number of inquiries which involved control movements in 
Scenario 41. 

CNTRLP: Number of inquiries which involved control movements in 
Scenario #2. 

CNTRL9: Number of inquiries which involved control movements io 
Scenario X3. 

CNTRL4: Number of inquiries which involved control movements ir, 
Scenario Y4. 

CNTRLTOT: Total number of inquiries for all four scenarios which 
involved control movements 

CNTRLTOT = CNTRLl + CNTRLP + CNTRL3 + CNTRL4 

CORINQ1: Ratio of correctness to inquiries for Scenario #1: 
CORINQl= CUI1 

CORINQ2: Ratio of correctness to inqairies for Scenario #2: 
CORINQB = C2/12 
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32. CORINQ3: Ratio of correctness to inquiries for Scenario #3: 
CO.RINQ3 = C3h3 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

48 

CORINQ4: Ratio of correctness to inquiries for Scenario t 4 :  
CORINQ4 = C4h4 

CORINQT: Ratio of total correct to total inquiries for all four scenarios: 
CORINQT = ( C 1 +  C2 + C3 * C4)/(I1+ 12 + I3 + 14) 

DELTACl: Change in subjective criticality estimate of event for Scenario It1 
after being provided with the answer; DELTACl = C A 1 -  CB1 

DELTAC2: Change in subjective criticality estimate of event for Scenario #2 
after being provided with the answer; DELTAC2 = CA2 - CB2 

DELTAC3: Change in subjective criticality estimate of event for Scenario #3 
after being provided with the answer; DELTAC3 = CA3 - CB3 

DELTAC4: Change in subjective criticality estimate of event for Scenario C4 
after being provided with the answer; DELTAC4 = CA4 - CB4 

DIFI: Difference between number of total tracks and number of unique 
tracks in Scenario #1: D I F l =  TT1- UT1 

DIF2: Difference between number of total tracks and number of unique 
tracks in Scenario #2: DIF2 = TT2 - UT2 

DIF3: Difference between number of total tracks and number of unique 
tracks in Scenario Y3: DIF3 = TT3 - UT3 

C1F4: Difference between number of total tracks and number of unique 
tracks in Scenario #4: DE4 = TT4 - UT4 

EIFT: Difference between number of total tracks and number of unique 
tracks in all four scenarios: DIFT = TOTTRAKS - TOTUTRKS 

E l :  Efficiency score on Scenario #1: E l  = 125 - 2 (minutes to diagnose) - (I1 -211 

E2: Efficiency score on Scenario 52: E2 = L25 - 2 (minutes to diagnose) - (I2 -2 ) l  

E3: Efficiency score on Scenario +3: E3 = [25 - 2 (minutes to dlagnose) - (I3 -2 ) l  

E4: Efficiency score on Scenario 44: E4 = r25 - 2 (minutes to diagnose) - (14 -2)] 

FLY: Computer variable for the variable flying; takes values: 
(0) if flying = 1,2,3, or 4 = non-pleasure 
(I)  tf flying = 5 = pleasure 
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49. 

50 

51. 

52. 

53. 

51. 

55. 

56. 

57 * 

58. 

59. 

60. 

61. 

62. 

63, 

FLYING: Most frequent kind of flying. 
Valued: (1) Airline 

(2) Commercial 
(3) Business 
(4) Military 
(5) Pleasure 

GAT: Participation in general aviation simulation; 0 = did not participate, 
1 = did participate 

GATK1: Open ended knowledge test on GAT subjects - subscore on engine 
operations (possible correct: 0-7). 

GATK2: Open ended knowledge test on GAT subjects - subscore on fuel 
systems (possible correct: 0-7) 

GATK3: Open ended knowledge test on GAT subjects - subscore on electrical 
systems (possible correct: 0-7). 

GATK4: Open ended knowledge test on GAT subjects - subscore on cockpit 
instrumentation (possible correct: 0-7). 

GATK5: Open ended knowledge t a t  on GAT subjects - subscore on weather 
(possible correct: 0-7). 

GATKG: Open ended knowledge test on GAT subjects - subscore on IFR 
procedure (possible correct: 0-7). 

GATKT: Average of all parts of open ended knowledge GAT test: 
GATKT = GATKl + GATKZ + GXTK3 + GATK4 + GATK5 + CAW6 

6 

GONOGO: Designates whether the pilot would have taken the flight under the 
given conditions. Valued: (0) - would not go, (1) - would go. 

11: Number of inquiries in Scenario #1. 

12: Number of inquiries in Scenario #2. 

13: Number of inquiries in Scenario #3. 

14: &umber of inquiries in Scenario #4. 

IFR: Variable designating upper and lower quartiles of IFR hours: 
(0) if !FR hrs.  9 175 
(1) if I F R  hrs.  =7@0. 
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64. IFRHRS: Hours of flying under instrument flight rules. 

65. 

66. 

67. 

68. 

69. 

70. 

7 1. 

72. 

73. 

74. 

76. 

76. 

77. 

78. 

79. 

80 

81. 

82. 

INPTRl: Ratio of inquiries to totai tracks in Scenario tl: INPTRl = Il/TTl. 

INPTRB: Ratio of inquiries to total tracks in Scenario #2: INPTR2 = 12lTT2. 

INPTR3: Ratio of inquiries to total tracks in Scenario #3: INPTR3 = I3/TT3. 

INPTR4: Ratio of inquirks to total tracks in Scenario #4: INPTR4 = I4/TT4. 

INPTRT: Ratio of total inquiries to total tracks for all four scenarios: 
INPTRT = TOTINQ/TOTTRAKS 

KNOW: Variable designating upper and lower quartiles of KNOWLEDG scores: 
(0) if KNOWLEDG 5 9 
(1) if KNOWLEDG 2 16 

KNOWLEDG: Score on aircraft systems survey (possible correct: 0-20). 

LATELY : Relative amount of flying done in last year: 
(0) if pilot has mcre than 50 hours 
(1) if pilot has less than 20 hours 

M1: Merit score on Scenmio #l: M 1  = ( C l )  x (El). 

M2: Merit score on Scenario 42: M2 = (C2) x (E2). 

M3: Merit score on Scenario 63: M3 = (C3) x (E3). 

M4: Merit score on Scenario #4: M4 = (C4) x (E4). 

ME CH : Mechkzic : (0) = not a mechanic, (1) = mechanic. 

PROPCONl: Proportion of control movements to inquiries in Scerario #l: 
PROPCONl = CNTRLllIl 

rROPC3N2: Proportion of control movements to inquiries in Scenario tc2: 
PROPCONB = CNTRL2112 

PROPCON3: Proportion of control movzments to inquiries in Scenario P3: 
PROPCON3 = CNTRL3113 

PROPCON4: Proportion of control movements to inwiries in Scenario P4: 
PROPCON4 = CNTRL4h.1 

PROPCONT: Proportion of total control movements tc total inquiries in all 
four scenarios; PRC'PCONT +: CNTRLTOT/TOTINQ 
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83. 

84. 

85. 

86. 

87. 

88. 

89. 

90. 

91. 

92. 

93. 

94. 

95. 

RAT: Substitute variable for RATING used to plot initial data t-bles. Takes 
on samc- values as  RATING. 

RATING: Rating type - 
1 = Private 
2 = Commercial 
3 = A i r  Transport 

RATSCORE: Variable dividing ratings into two groups - 
0 if private pilots (RATING = 1) 
1 if commercial o r  air transport pilot (RATING = 2 or  3) 

RECENCY: Relative amount of flying time in past year - 
1 = more than 50 hours 
2 = :.eween 20 and 50 hours 
3 = less than 20 hours 

S: Specific subjects involved in the GAT experiment - 
0 Cor subject numbers 11, 31, 32, 33 
1 for subject numbers 28, 34, 35, 38 

SEHHS: Hours of flying in a single engine aircraft. 

SEHRSLOG: Natural logorithm of single engine flying hours; 
SEHRSLOG = LOCE (SEHRS) 

SHRSRANK: Variable designating uoper and lower qnartiles for jingle 
engine hours; 
0 if SEIiFtS S 488.75 
1 if SEHRS 22075.25 

SUB: Variable dividing subjects - 
0 if subject number is 5 30 
1 if subject number is > 30 

SUBJECT: Subject number (N = 40) 

T: Variable designating upper and lower divisions for the variable TIM; 
0 if TIM C ,625 
1 if TIM > 1 

TC: Variable designating upper and lower quartiles of TOTCOR; 
0 if TOTCOR == 10 
1 if TOTCOR 2 17 

TDELTAC: Sum of the changes in subjective criticality estimates for all 
four sceuarios; TDELTAC TCRITAF?' - TCRITFEF 
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96. TE: Variable designating the upper and lower quartiles of TOTEFF; 
0 if TOTEFF S 42 
1 if TOTEFF 259 

97. THRSLOG: Natural logarithm d totaly flying hours; 
THRsLffi = LOGE (TCYrHRs) 

98. THRSRAhi: Variable designating upper and lower quartiles for total 
flying hours; 
0 if TO'IWRS 5 1007 
lifTOTIiRS25375 

99. TIN: Time attribute of an alternate airport - flying time to the airport 

100. TM: Variable designating upper and lower quartiles for total merit; 
0 if total merit 5 129.25 
1 if total merit 235 

101. TOTCOR: Total correct score for all four scenarios; TOTCOR = C 1  - C2 + C3 + C4 
(possible correct = 0-20). 

102. TOTCFUTAFT: Total of subjective criticality estimates for all four scenarios 
after being provided with the answers; 
TCRITAZT = CA1+ CA2 + CA3 * CA4 

103. TCRITBEF: Total of subjective criticality estimates for all four scenarios 
before oeing pnvided with tbe answers; 
TCRITDEF = CB1+ CB2 + CB3 CB4 

104. TCrrEFF: Total efficiency score for all four scenarios; 
TOTEFF = El + E2 + E3 + E4 

105. TOTHRS: Totat flying hours. 

106. TOTINQ: Total number of inquiries for all €our scenarios; 
TOTMQ = I1 * I2 + 13 + I4 

107. TOTMERIT: Tatal merit score for all four scenarios; 
TOTMERIT = MI + 1112 + ~3 + 11r4 

108. TOTTRAKS: Total number of tracks for all fcur scenarios; 
TOTTRAKS = TT1+ TT2 + fT3 + TT4 

109. TOTUTRKS: Total number of unique tracks for a11 four scenarios; 
TOTUTRKS = UT1 + UT2 * UT3 + UT4 
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110. TRA: Variable used to plot the TRAINING values in the data tables; 
1 = military 
2 = civilian 

111. TRAINING: Type of training (military or civilian). 

112. TT1: Total number of tracks in Scenario #1. 

113. TT2: Total number of tracks in Scenario 42. 

114. TT3: Total number of tracks in Scenario #3. 

115. TT4: Total number of tracks in Scenario 94. 

116. UT1: Number of unique tracks in Scenario tl. 

117- UT2: Number of unique tracks in Scenario 82. 

118. UT3: Number of unique tracks in Scenario k3. 

119. UT4: Number of unique tracks in Scenario #4. 

120. WX: Weather attribute of an alternate airport; includes ceilings and visibilities. 

121- YOVNGOLD: Variable designating the upper and lower divisions of the age 
category; 
0 if age - 30 
1 if pge > 50 

122- 21: Ratio of correctness to total tracks for Scenario $1; 
z i  = CVTT~.  

123. 22: Ratio of correctrebs to total tracks for Scenario t2;  
22  = C2/TT2. 

124. 23: Ratio of correctness to total tracks for Scenario #3; 
23 = C31TT3. 

iL5. 21: Ratio of correctness to total tracks for Scenario f 4 ;  
24 = CQ/TT4. 

126- ZT: Ratio of total correct to total number of tracks for all four scenarios; 
ZT = ( C 1 +  C2 * C, + C4)/(TT1+ TT2 + TT3 + TT4) 
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drive gear failure) do demonstrate the monotonic r@latiOMhip to ratbg me 

would expect. Scenario 4 (h.oaen static port) shows mlxed results. 

Flve subjects hold atrcraft mechanic licenses (A and P) as well as pilot 

licenses. In terms of groas measures, the meichanica' performances are 

superior to the other groups. They have the top scores for knowledge, total 

correct, total merit and total efficiency. The only inconsistency agaln shows 

up in scenario 4 (frozen static port). However, since that problem relates 

to symptoms more likely to be directly observed in their role as pilot rather 

than mechanic that result is not totally unexpected. More extensive analysis 

of the diagnostic performance data will follow in section K. 

E. Decision Making Phase of P!P Scenarios 

Procedure 

The decision making phase of the paper and pencil exerclse was dlvided 

into two parts: an information seeking part and a rank ordering of alternatives. 

The goal of the study was to determine the type of decision rule a pilot would 

use in a given problem, and to determine his worth structure concerning the 

characteristics of airports to which he might divert if it became necessary. 

The decision making portion of the experiment was  begun after the pilot hnd 

completed all four scenarios ln the diagnosis phase described above. 

One basic scenario was used throughout the decision making phase and is 

given in .Appendix €3. The missloa of the hypothetical fllght was to fly from 

Bongor, Maine, to Glens Falls, Sew Sork, for (1 buslness meeting. The 

flight was to be made in a Cherokee Arrow and the weather at the time of the 

flight, both along the route and at the destination, was marginal. Though there 
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Score on knowledge survey 

Correct on Scenario 1 

Correct on Scenario 2 

Correct on Scenario 3 

Correct on Scenario 4 

Total correct 

Total merit 

Total efficiency 

Table VI-5 

Diagnosis Performance Means by Rating 

Total Population 

12.5 

2.7 

2.9 

3.4 

4 .0  

13.0 

176.0 

50.0 

PVT 

10.5 

3.2 

2.7 

2 .2  

4 .1  

12.3 

156.0 

45.0 

- COMM 

12.3 

2 .8  

2.9 

3.4 

3.8 

12.9 

179.0 

51.0 

- ATP - 
14.1 

2.0 

3.0 

4.1 

4 . 3  

13.4 

186.0 

50.0 

A & P  

14.6 

3.4 

3.0 

4 . 0  

4.0 

- 

14.4 

203.0 

53.0 
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was no severe weather forecast (in the form of thunderstorms, turbulence, 

or ice), the prevailing rainy and drizzly conditions required the flight to be 

conducted under Instrument Flight Rules (IFR). In fact, weather conditions 

were such that the flight would be in instrument meteorological conditiens 

for almost the duration of the time aloft. 

After the pilot was given a brief introduction on the mission of the flight, 

the navigation chart of the area, and the airplane, attention was turned to 

analyzing the weather in detail and filing a flight plan. The pertinent 

weather information was given to the pilot in a text written in ordinary 

English. This text is given in Appendix H. The wording of the text was 

intended to reproduce what one would normally he rr in a telephone conversa- 

tion with a weather briefer. Al l  of the weather information needed to plan 

the flight was included. After the pilot confirmed that he had read and under- 

stood all of the weather, the next step was to compute and file a flight plan. 

In order to save time, the flight plan in Appendix H had already been com- 

piled based on the reported weather, and was shown to the pilot for his approval. 

The most Important features of the flight plan were reviewed by the pilot, 

including flight routing, cruising altitude, and estimated time enrc te. 

After reviewing all of the information on the airplane, weather, and flight 

plan, the pilot was  asked if he would normally attempt a flight under the stated 

conditions. He was also asked if there w a s  any other information he would 

like to have concerning the proposed flight. His responses to these questions 

were recorded, and it was then time to embark on the flight. 
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The description of the flight started with a routine lift-off from the Bangor 

Airport at the planned departure time. Climb-out after departure and the 

transition to cruising flight was uneventful. The pilot followed the progress 

of his flight on a very simplified enroute navigation chart (see Appendix H), 

which portrayed the intended route of flight, radio navigation aids and fixes, 

and the departure and destination airports. 

The flight continued uiieventfully until a point about midway along the route. 

A t  that point the aircraft encounteyed a serious problem with its electrical 

system. The problem was investigated (in the text) and was determined 

to be an inoperative alternator. After the problem was clearly defined, an 

upper time limit estimate was provided to indicate how long the aircraft 's 

systems could rely on the reserve electrical power of the battery. 

The section of the text in which the problem was introduced and discussed 

contained several key pieces of information for the pilot. First, the symptoms 

and the diagnosis set the stage far the need to divert. The straightforward 

statement of the diagnosis was intended to give each pilot, basicaily, the 

same perception of the pro'.lem. This was of great importance since the 

focus of this part of the paper and pencil exercises was on the decision issties 

rather than diagnosis. If left to their own diagnostic devices, it would have 

been unlikely that all pilots would have perceived the problem in the same way. 

Ne.*, the ramifications of the problem were clearly assessed. Having only 

battery power left to run electrical equipment, the problem was urgent in terms 

of time. The consequences of flying beyond the lifetime of the battery were 
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sarious; the flight would be trapped aloft with no means of communication 

or navigational guidance. Finally, an estimate of the degree of time urgency 

was given when the estimated maximum time the battery would be useable w8s 

stated as being not longer than fifty minutes. 

The paper and pencil scenario had now reached the pc!?t -+ere the pilot 

w a s  called upon to use his own personal decision skills in the problem. The 

f i rs t  task was to conduct an information seLrch on the attributes of potential 

diversion airports. This included ceiling, visibility, navaids , terrain, 

availability of radar and distance and heading to the diversion airport. The 

purpose of this task was to determine the search strategy and decision rule 

the pilot used in shopping for an airport to which to divert. The second task 

involved ranking a group of sixteen airports from "most preferable" to 

' least  preferable" based on their attributes. 

The Information Seeking Task 

In this task the pilot was required to search for an airport to which to 

divert. The pilot was E : plied with Figure III (in Appendix H) which 

portr... .ed all the airports in %e are&. (He was cautioned that all the airports 

shown should not be assumed to be within his range in terms of battery time. ) 

As he viewed the new chart, the pilot was read the instructions given in 

Appendix H. The experimenter was to act 6s the air traffic controller and 

would provide the >ilot with the information he requested. The information the 

e.xperimenter was prepared to give was summarized in Table A 4  and shown to 

the pilot. 
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In all there were sixteen potential diversion airports and the experimenter 

had six pieces of information (from four questions) on each. The total s tore  

of information maintained by the experimenter is given in Appendix H. 

Each pilot was told he had two minutes to conduct his search and to select 

an airport to which io divert. The mention of the two minute time limit was 

intended to place a sense of time urgency on the problem, btit I t  was not 

enforced. In most cases, however, the pilot had finished his search and 

selected an alternate airport before the two minute limit had expired. 

The experimenter provided &e pilot with each piece of infcrmation that the 

pilot requested. The e.xperimenter recorded the sequence in which the 

information was requested. The pilot continued to request information 

until he had found an airport and revealed his choice to the experimenter. 

At this point the information seeking task was completed. 

F. The Ranking of Alternatives (Decision Phase) 

Information from ranking of alternatives was used to interpret the informa- 

tion seeking phase. In this phase the pilot was asked to rank sixteen alternative 

airports from "most preferable" to ' least  preferable" given his problem situation. 

Each airport was described in terms cf four attributes, namely, a i r  traffic 

control (ATC) services at the airport, the weathei- at the airport, fie time to 

fly from present position to the airport, and the best instrument approzch 

facilities there. These attributes were chosen because they were independent 

with respect to each other, and also because they were the more pertinent 

items to consider in this situation. 
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Each attribute was varied over two levels: a 'blgh" value (in te rms  d 

pilot preferability) and a 'low value". (For example, weather 100013 vs. 

50011.) A11 possible combtnations of high and low attribute levels resulted 

in a total of sixteen alternatives to be considered. The end product was a 

4 2 full-factorial design as shown in Table VI-6. 

Each alternative airport was depicted on a 3 x 5 inch card in terms of 

the four attributes. The sixteen cards were  shuffled ,prior to the e-xperiment) 

and laid out before the subject in a random fashion while the experimenter 

A ead these instructions: 

"I have a se t  of cards here; each card describes 3n airport in 
terms of ATC services, weather, the flight time from your 
present position to the airport, and the approach facilities 
there. I would like you to rank these airports from your "most 
preferable" to "least preferable", given the situation you are 
in. Recall that you have, a t  the very most, fifry minutes of 
battery time left. You map find it useful to divide the airports 
into "subgroups", r3nk the airports in each subgroup, and then 
reconnect the subgroups as  appropriate. Afterwards, make a 
final check of your rank and adjust it a s  you think necessarv. " 

Subjects were given as much time 3s they needed to complete the ranking 

task, but rarely did it take l o x e r  than five minutes. While performing the 

task, subjects generally appeared quite involved and made meticulous 

adjustments to the r3nk before yielding a final ordering. When the subjects 

had completed the ranking task and were satisfied with their final prcduct, 

the e.xperimenter recorded the Fequence and the ranking task was  complete. 

In an attempt to estimate how "real" this simulation seemed to the pilot, 

and to determine the pilot's relative risk taking tendencies, &be experimenter 

posed 3 series of questions for the pilot to consider. The questions asked 
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4 Table VI-6. 2 Factorial Lavout of Airports 

Attributes  
Airports 

ATC WeatAer Time Approach 

A 

B 
C 

D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 

P 

(+ = High value; 

Key : ATC : 

Time : 

Weather: 

Approach : 

- =  Low value) 

+ = Tower w/radar 
- =  UNICOM 

+ = 15 minutes 
- =  30 minutes 
+ = 1000'  c e i l i n g ,  v i s .  3 miles 
- =  500'  c e i l i n g ,  v is .  1 m i l e  
+ = ILS - = NDB 



the pilot how far he would go down his l ist  of ranked airports to flnd one 

with maintenance facilities to repair  his airplane--a question which seeks 

to find the limit of his diversion options. (The line of questioning used is 

contained under the Go-No-Go Instructions of Appendix H. ) When the pilot 

finished these questions both the diagnosis and decision making sections of 

the paper m d  pencil e- l rc i ses  were completed. and the pilot was  invited to 

p r t i c ips t e  in other events at the workshop. 

Analvsis and Results 

The ma!:.-sis proceedtd f i rs t  with the ranks provided by the subjects in 

the ranking t s k  and then with the information seeking data. The firs! part 

of the analysis w3s aimed at modeling the pilot's worth hcction and determin- 

ing if worth functions 3re related to pilot background variables. The theory 

of conjoint measurement w3s used to model the worth functions (Krhcz and 

Tversky, 1971). The second part of the analysis centered : J h e  informa- 

tion search and how it related to worth functions. The analysis wh.ch follows 

was  performed on the first 39 subjecw. 

Results of Ranking T3sk 

A list of the ranks made by the subjects is given in Table VI-7. In this 

table the 'h3me" of the airport refers to the airport with the same dimensimal 

cont .gumtion 3s shown in Table VI-6. It should be mentioned that the airport 

name was not revealed to the pilot during the experiment in order to prevent 

any biasing effects that may have resulted. The numbers in Table VI-7 

correspond to the positions in the rsnk that the airports were assigned by the 



subject. The convention was adopted that sixteen equals "most preferable". 

It i.c evident that most of the pilots agreed airport A was most preferable 

and airport P was least preferable. However, much variation is seen in 

the airports in between. 

The additive model in Equation (1) below was assumed to be the under- 

lying psychological process in the worth structures and was proven to be 

the correct choice through a ser ies  of axiomatic tests performed on the 

ranked data. (The ranked data of Subject 4 did not conform to the tests and 

his data was dropped from further analyses. In effect, the subject showed 

no logical preferred order. A 65 year old retired pilot, he may not have 

understood the instructions. ) 

Wfi,)  = Bat, 9 .Arcz h.x WX, * Btim TIMz Bapp APPz (1) 

where WGZ) is the psychological worth of airport t ,  and ATC,. WXZ, TINz, 

and -4ppZ are  the independent mriables describing airport 2 in terms of 

AT services, weather, time and approach aids respectively. The 

irdependent variables took on a value of -1 for the high level or -1 for the 

lo .- level of each attribute. The "BB"-coefficients are  the %eights" each 

subjcct ?s igned to a certain attribute in his ranking scheme. The B-coefficients 

u' > *  e obtained by performing a regression analysis where the rank position of 

airport z was substituted (according to conjoint measurement) for N'mz). The 

resulting coefficients are  shown in Table VI-8. The range of values for the 

coefficients is 0.250 to 4.000. An interpretation can be offered if one con- 

5rders all four coefficients for each subject. The coefficients for Subject 1, 

for example, are  1.000, 2.000, -1.000, and 0.500 for ATC, weather, time, 

85 



Table VI-7. List of Airport Ranks by Subject 
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Table VI-8. Coefficients of the Additive Worth Function 

(SUBJECT 4 DELETU,. 29 SUBJECTS REX&IlllNC) 

SUBJECT BSIIBATC BSUBWX ESUBTIN BI'UDAPP 

1 
2 
3 
3 
6 
7 

9 
18 
I 1  
I2 
13 
I4 
I5 
16 

a 

1 .000 
2.000 
e. 500 
1. 125 
8.500 
4.000 
1 - 5 0  
2.500 
2.500 
4. woo 
2. dot: 
1.625 
e. 615 
I - t u 5  
1 . ctoo 

2.000 
e. 750 
1.800 
2.375 
1 . 000 
1.500 
4.000 
2.375 
3.375 
0. i 5 0  
0.750 
2. b25 
4.000 
1. oou 
2. two 

4.800 
4.000 
4.000 
2.080 
2.000 
1. so0 
0.625 
0.625 
0.750 
0.625 
0.750 
2.500 
0.625 
3. u75 
4.000 

8.300 
0.625 
2.000 
2.875 
4.800 
8.250 
1.625 
2.370 
1.4375 
1 .?SO 
4.009 
u. 750 
I .?SO 
0.500 
0.580 if 2.315 1 -  i5V 2.125 2.375 

18 3.250 2.750 1 -375 0.625 
19 1.250 1 . s o  4.000 e. 300 
20 1 -1175 I .  000 3. 'SO0 I .  375 
21 2.000 4. u0v 
22 3.500 1.250 
23 2.900 4.000 
24 2.000 8.Il75 
25 1.000 3.375 
26 I. 375 1.500 
27 2. no0 I 800 
28 0. I175 4.000 
29 0 .  u75 4.000 
30 8.750 4.000 

0.500 
0.730 
0.500 
0.250 
2 .  ovv 
0.500 
e. 375 
1.250 
2.000 
2.800 

1 

I 
4 
1 
4 
4 
I 
8 
8 

3 - 000 
5 00 
000 
000 
875 
000 
000 
375 
623 
730 
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and approach, respectively. This can be interpreted as follows: the 

worth of having the time value at the high level (15 minutes) w2s twice that 

of having the weather value at the high level (1000 feet ceiling and three miles 

visibility), four times the worth of having ATC at the high level (tower with 

radar), and eight times the worth of having the approach at the high level 

(ILS). In other words, the most important feature about each airport 

for Subject 1 m a s  time followed by weather, XTC, and approach, respectively. 

In order to test for the validie of the additivity assbmption in the model, 

the preference ranks determined from equation A for the sixteen airports 

were piotted against the original preferences for each subject. r. Spearman 

rank correlation was  computed to estimate the fit of the model derived ranks 

with the actual ranks. Figure 17-8 depicts a typical plot. The correlation 

coefficients ranged from 8.74 to 1.00 for the 29 subjects indicating the model 

additivity was an acceptable assumption. 

The next step was to determiae if any relationship existed between the 

worth function coefficients 3nd pilot background variables. Since no measure 

of pexformance exists in this experiment, the data was  examined to find 

relationships or explain differences. The basic approach was to dichotc.--ize 

the sample population based on several different descriptors of a pilot's 

background and skill. The means of the coefficients for the resulting two 

groups were then compared to see if any significant differences occurred as 

3 result of the division. The divisions were performed on the basis of flight 

e.xperience, training, type of pilot certificate, type of flying most commonly 

done, and measures of ability determined by the knowledge survey and other 
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means. A summary of :oefficient means by pilot category is provided in 

Tal-'- VI-9 along with the critei ia used to split the sample population. 

Significant differences (at the p 4 . 10 level) are  enclosed in dashed lines. 

Analysis of Worth Functions By Subjects and Groups of Subjects 

The basic approach in this sectior is to dichotomize the sample popula- 

tion based on several different descriptors of a pilet's background and skill. 

The splits a re  performed on the basis of flight experience, training, type 

of pilot certificates, type of flying most commonly engaged in, and measures 

of ability determined by the knowledge survey and other means. The worth 

coefficients of Table VI-9 become the center of attention in this analysis. 

This analysis covers the first thirty subjects used in this test. 

The first dichotomization is performed on the basis of total flight exper- 

ience in terms of flight hours. A bar graph representing the distribution of 

total hours is shown in Figure VI-9. As evident in this graph, the distribution 

of total hours is in no way "normal", and the criterion used to split the sample 

is somewhat arbitrary. However, the sample was split at  the natural break 

nearest the 50th percentile. Because the sample is more heavily loaded 

with experienced pilots (many people consider pilots with SO0 or more hours 

to be "experienced") the search for the natural break in total flight time pro- 

ceeded from the mean toward the "inexperienced" end. The criterion used 

to split the pilots was 1100 hours. Nine pilots were in the lower category 

and 2 1  pilots in the higher category. A t-test was performed to determine 

if there were any significant differences between the means of the B coefficients 
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for the two groups. At  the p = . 10 level, no significant differences were 

found. 

Splits of tho sample were made based on the number of Instrument 

Flight Rules (IFR) hours and sinple engine airplane houre. .4 bar graph 

of the distributions of each a re  shown in Figure VI- 10 and VI- 11, 

respectively. A s  in the case of total flight hours, these distributions a re  

far from normal, and the "cut" was made in the same manner. At the . 10 

level, no s,,nificant differences were found. 

The type of training a pilot received was used as a criterion to split 

the sample. There were seven military trained pilots and twenty three civil 

trained pilots. A t-test was performed on the worth coefficients an? a 

difference which was significant at the . 10 level (p = .06) was observed for 

the mean value of Bate. (Recall that Batc is a measure of the importance of 

a i r  traffic control facilities in airport worth evaluation. ) For civil trained 

pilots the mean value of Batc was 1.92 and for military trained pilots it 

was  1.25. 

There are several possible interpretations of this difference, but most 

allude to the pilot's attitude toward ATC facilities which are formed by pre- 

vious exposure. In military pilot training programs, milch mor? emphssis 

is placed on emergency procedures and resolving in-flight problems &an 

in civil pilot training. This may lead to an attitude of greater self-reliance 

in problem aftuations on the part of the military pilot, and a reluctance to let 

too much of the problem "out of tLe cockpit". Additionally, military trained 

pilots may feel more strongly that ATC facilities would be of only United 
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value in this scenario. Admittedly, if battery pcwer had been depleted and 

no communications were possible, ATC services would be of no use at all. 

The pilot sample \vas split on the basis of the type of certificate the 

pilot held. In this case, the twenty one pilots with Private and Commercial 

certificates made up one group, and the eight pilots with Airline Transport 

Pilot certificates made up the other group. The split was made in this fashiol; 

because the differences between private pilots with instrument ratings and 

commercial pilots are not great. The e.xperience and proficiency require- 

ments for the issuance of those certificates are  nearly the same. In many 

ways, the commercial pilot training and certification process provides only 

slight extensions of skill to private pilots with instrument ratings. On the 

other hand, the stringent eligibility and proficiency requirements for the 

issuance of the Airline Transport Pilot (ATP) Certificate have led to the feeling 

that ATP airmen are  the "cream of ~e crop''. The difference between the 

two groups of pilots in terms of tested ability is distinct. 

Some notable differences were observed when comparing the worth 

coefficients of these two groups. The mean value of Bwx, a measure of the 

importance of weather to a pilot in this situation, was 2.49 for private and 

commercial pilots and 1.48 for airline transport pilots. A t-test was performed 

and this difference was found to be significant (p = .05). Another difference, 

significant at the .10 level, was observed for t b  value of Btim, a measure of 

the importance of the time attribute. For airline transport pilots Btim had a 

mean value of 2.53 ana for private and commercial pilots the mean value was 

1. SG. 
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The difference in Bwx between the two groups is most likely a function 

of training and the relative 'level of preparedness " to fly in advwse weather. 

Although pilots in both groups are  trained in the procedures and maneuvers 

to be used when flying in bad weather, airline transport pilots are required 

to perform those maneuvers to much greater accuracy on flight tests. Also, 

in meeting the greater experience requirements for the ATP certificate, 

airline transport pilots have been exposed to n.ore poor weather situations 

than their private and commercial pilot counterparts. In summary, airline 

transport pilots have reason to feel more confident about their flying skills 

in relation to marginal weather. 

Some interesting comments can be made about the difference in mean 

values of Btim for the two groups. Because the mean value of Btim was 

higher for airline transport pilots (2.53) than for private and commercial 

pilots (1.56), one might casually suggest that airline transport pilots are 

p o r e  cautious. The higher value of time could be interpreted as a desire 

of airline transport pilots to avoid flirting with the problem by landing quickly. 

This is the opposite of what one would expect, especially in view of the 

supposedly "stress hardening" experiences an airline transport pilot faces 

in his training and career. However, a more probable explanation for the 

observed difference is that airline transport pilots can take advantage of their 

skills to consider more airports. They may feel b2tter prepared to conduct 

flight operations into an airport which is nearby but has poorer weather, and 

can ,.herefore take advantage of time. Private and commercial pilots, though, 

may feel that some airports, even though they are  close by, are  beyond the 
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limits of their skills in t e r a s  of weathm and facilities. Hence, they sacrifice 

time for better conditions and services. 

The type of flying most commonly done was also used as a basis to dividt 

the pilot sample. Pilots who engaged primarily in business, light commercial, 

or pleasure flying made up one group. Pi1c:s who were involved with airline 

or military flying comprised the other group. The spli- was made in this 

iashim because the highly structurtd environments in which airline and 

military pilots operate are  similar in many ways. They are  both usually 

required to fly in and out of busy terminals and heed schedules, policies, 

and other disciplines. Pilots who fly for business, light commercial, or  

pleasure concerns, however, operate in a much more relaxed atmosphere 

and dictate their own policies. Based on this split of the sample population, 

a significant difference (p = -024) was observed for the cwflicient Bate. 

The mean value for business, light commercial, and pleasure flyers was 

1.96, while the value for airline and military pilots was 0.90. 

An explanation of this difference could be that military and airline pilots 

fly much more frequently in congested areas, and are  mostly under the sur- 

veillance of an ATC facility. Given this day-after-day exposure to ATC, they 

are more aware of its abilities and limitations. Another potential explanation 

is the same one noted earlier when contrasting civil trained and military trained 

pilots. Because of the intensive initial and recurrent training in normal and 

emergency operations they receive, military and airline pilots may wish to 

solve in-flight problems with "on-board" resources rather than let too much 

of thc problem cctside of the cockpit. 
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Al l  of the previous comparisons were based on classifications of pilot 

experience. There were, however, four measures of pilot ability and self- 

evaluation that were used to classify the pilots as well. The following dis- 

cussion treats comparisons made on the basis of the pilot's knowledge of 

aircraft systems, his ability to diagnose problems in flight, and estimates 

of the perceived risk he assigned to the problem. 

The knowledge survey which was  administered to the subjects before the 

e.xperiment was designed to estimate their knowledge of aircraft systems. 

The mean score w a s  12.3 out of a maximum of 20, and the distribution of 

scores was  approximately normal, a s  seen in Figure VI-12. The division 

was made at the mean and no significant differences were found in the worth 

coefficients of the resulting two groups ?t the . 10 level. 

The pilot's diagnostic ability was estimated in the first  half of the decision 

making workshop. In the four diagnosis scenarios, pilots were scored on the 

closeness of their diagnoses to the real problems, and these scores were  

summed up to yield a total correct score. The split was made at  the 50th 

percentile oi the total correct score which ranged from S to 20. At the . 10 

level significant differences were observed for two coefficients. Pilots in 

the lower half of the sample based on the total correct score had a mean value 

of 2.20 for the Bapp coefficient, while pilots in the upper half had a mean 

value of 1.37 (Bapp is a measure of pilot worth for the instrument approach 

dimension, and, for this difference, p = .080). .J possible interpretation of 

this difference is that diagnostic ability parallels a pilot's perception of his 
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flying skills. The NDB approach, aside from being less accurate, requires 

more headwork and skill than an ILS approach. 

The other coefficient in which a . 10 level significant difference was  

observed is Btim (p = .076). Pilots in the upper half of the sample had a 

mean value of 2.25 while those in the lower half had a mean value of 1.37. 

This difference may again relate to the perceived level of skill. Pilots 

higher in diagnostic ability may not pexceive the problem situation to be 

any more time critical than pilots in the lower half, but they can take 

advantage of closer airports more often. They believe they have the skills 

necessary to meet the challenges of poorer conditions which may accompany 

the closer airports. The notion that flying skills and diagnostic skills are 

related should be esamined in future research. 

During the preflight preparation stage of the decision making scenario, 

each pilot-subject was  asked if he would normally attempt the flight under the 

stated conditions. Ten of the pilots indicated they would not t ry  it while 

20 said they would. A significant difference (p = ,026) was observed between 

the two groups for the coefficient for approach aids, B 

they would not attempt the flight had a lower mean value for Bapp (1.01) than 

those who said they would try the flight (2.11). This observed difference does 

not lend itself to a simple, straightforward interpretation. One would expect 

the relatively cautious pilots who would not attempt the flight to prefer the 

better approach aid (in this case the ILS) s o  they could have more in their 

favor. However, if one looks at the other differences in coefficient means 

even though they are  not significant, some tnsight is gained. Pilots who would 

Pilots who said aPP' 
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not go on the flight had a higher value for time, and a lower value for weather. 

This trend leads one to believe that the leery pilots do not wish to push their 

luck in terms of time. Hence, they put more weight in the time factor and 

take emphasis away from other factors. 

The final dichotomization of pilots was performed on the basis of their 

responses to the questions on maintenance facilities. In essence, each 

pilot was asked how far down the l ist  of airports, arranged from most pre- 

ferable to least preferable, he would go to find the necessary maintenance 

facilities to repair his plane. Fifteen pilots said 1, 2, o r  3 airports and 

fifteen pilots said 4 or more (the range 1 to 14). The mean value of Btim 

was 2.28 for pilots who responded with 3 or  less (call them "less risky" pilots) 

while the same measure for the (more risky) pilots who responded with 4 or  

more airports was 1.40. This was  significant at the . 10 level (p = ,083). 

This difference can be attributed to conservatism of the pilots in the less  

risky group. In the same manner they are reluctant to take risks by "passing 

up" too many preferable airports, they a re  unwilling to pass over a closer 

airport (in terms of time). 

A summary of the results of all the analyses performed in this section i s  

given in Table VI-10. It k interesting to note that significant differences in 

worth function coefficients were not a result of flight differences, rather,  were 

related to the grade of pilot certificate, the amount and type of initial and 

recurrent training, and the type of flying most commonly done. This suggests 

that training and repeated exposure te testing situations a re  the variables which 
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can predict the general form of a pilot's worth function. A closer examination 

of the training and certification process is in order. 

Once a pilot obtains a private pilot certificate with an instrument rating, 

there is very little he must legally do to continue exercising the privileges of 

his certificate. He  can continue to accrue many hours of flight time 5ut he 

is required to demonstrate, on only a sporadic basis, that he is maintaining 

his basic skills. Airline transport pilots and those pilots who fly for the 

military or  airlines, however, must maintain a higher level of skill regardless 

of the amount of flight time they have. Many are  required to demonstrate 

proficiency in all sorts of demanding situations and at much more frequent 

intervals than the biennial flight reviews required of general aviation pilots. 

The general "level of preparedness" is much higher for military and airline 

flyers than for the rest  of the flying population. A l l  of this lends support to 

the notion that the total amount of flight experience is not as important as  

the amount and quality of initial and recurrent training in determining the 

general worth structure of a pilot. 

G. Results of Information Seeking Task 

Pilots were referred to the simplified charts of Appendix H when performing 

information searches. Because of the hypothesized strong winds aloft (out of 

the southwest at 30 kts. ), airports which were closer in terms of distance 

were not always closer in terms of time. Table VI-10 shows rank ordertngs 

of the rirports, from nearest to furthest, in terms of both time and distance. 

Table VI-11 depicts a subject by airport listing of worth values. 
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1 
2 
3 
1 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Table VI-10. Rank Orderings of Airports In 
Information Search From Nearest to Furthest 

In Terms of Time 

E 
I 
H 
N 
P 
x 
J 
F 
0 
L 
D 
C 
X I  
G 
B 
K 

I 
E 
0 
N 
P 
F 
H 
J 
G 
B 
A 
L 
C 
D 
K 
M 
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-411 twenty-nine subjects considered airport 1 (i.e., information was 

requested 2bout I) and twenty-nine considered airports E and 1;. The 

frequency of consideration decreases for airports further away. The 

number of times each airport was chosen as an airport to which to divert 

in this scenario is given in Table VI-12. The most popular choice was 

airpcrt N. 

E x h  pilot's search pattern was analysed in an attempt to determine the 

search and decision logic used when seeking information. Though many pilots 

displayed definite search patterns, determination of a decision rule was not 

possible for two reasons. The firat is that many pilots reverted to standard 

ATC infori,iation exchange formats. IF. requesting weather information, for 

example, they would always reqlest  "ceiling" before "visibility" ab in the 

format for such data in weather reports. The second reason is that many 

pilots estimated bearings and distances directly from the chart, and hence 

they had information for which no record of request was made. 

Some interesting observations can be made, however, when a comparison 

is made between the results of the ranking task and the information search 

task. Table VI-13 lists the pilots whose most important attriblites were 

ATC, time, weather, and approach aids, respectively. 

Airports N and J were the only ones choscn in the group of pilots who 

considered "time" to be the most important attribute. Airports N and J a re  

in the top half of the airports ranked ciccording to closeness in terms of time. 

Pilots who considered other attributes to be the most important, however, 

chose a much broader range of airports. Pilots in the group who considered 
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Table VI-12. The ??umber of Times Each Airport 
Was Chc,,,en as a Diversion Airport 

Airport 

N 
J 
0 
C 
A 
P 
E 
M 

Number of P i lm 

10 
8 
3 
3 
2 
2 
1 
1 

30 
- 



ATC 

s7 
s 9  
s 1 1  
S 17 
S 18 
s22  

Table VI-13. Most Important Attribute for Pilots 
(Subject Numbers Shown) 

Weather 

sa 
s 10 
S 13 
S 14 
s21 
s23 
S25 
S28 
S29 
S 30 

Time Appr oach 

s1 55 
s 2  56 
s3 s 12 
S 16 524 
S 17 526 
s 19 S 27 
s20  
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weather to be the most important attribute chose airports A ,  C, J, hi, N, 0, P; 

pilots who thought ATC to be most important chose airports 0, N,  J, E, and 

pilots who thought Approach Aids were most impwtant chose airports 

A ,  C, J, N. The same trends were apparent in the airports considered by 

pilots in each group. The general interpretation is that pilots who placed 

most emphasis on "time" did not venture as  far to find 3 suitable airport 

as did pilots with other priorities. Pilots who placed emphasis on an attribute 

other than time, on the other hand, either were forced to search continually 

for airports with better conditions (3nd maybe further away), or felt that 

time was not a serious issue 2nd searches of airports further away were  

feasible. 

H. .Jnalysis of P & P Tests (.411 Phases) 

Since thc two major phases of the P 6- P tests yielded almost ninety 

measures on each subject (both raw data and derived measures) it became 

necessary to develop an overall analysk s t r a t e 0  to derive the maximum 

amount of useful information from such data. Note that the data was divided 

into four basic categories: The Diagnostic Phase Data, the Decision Phase 

Data, the Subject Biographical Data and Knowledge Data. Those data bases 

were individually analyzed for descriptive statistics and derived measures of 

pel iormance. 

In the diagnostic phase the raw data included (for eRch scenarto snd for all 

scenarios) merit,  correctness score, efficiency, total inquiries, total unique 

tracks, total tracks, criticality assessments before and after the dtagnosis, use 
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cf control inputs a d  derived measur\ Z (correct score/total tracks) and 

CORINQT (correct score/total inquiries). These variables are defined in 

the glossary. 

For  the diagnosiic phase, means and variances of these measures both 

for each subject across the four scenarios and for all subject across each 

scenario were reported in the 3Iaster Data Table (Table VI-1.4). In addition, 

the distribution of these data was examined for outliers. Rank correlations 

were examined to find associative relationships (see Table VI- 15). These 

data were then used i R  the combined data analysis which is described below. 

The decision phase data included subject airport rankings, information 

seeking profiles, go/no go responses before the flight and the number of 

airports the subject was willing to pass to locate an aircraft mechanic. 

As described above, conjoint measurement analysis was employed on the 

ranking data to derive worth functions. These were expressed as pilot 

weightings for weather (U'X), navigation aids (APP), radar services (ATC), 

and time to the airport (TIM) (see Glossary). The decision phase data were 

then used in the combined analysis. 

The third major data base involved subject biographical and knowledge 

data. These a re  shown in Table VI -14. These data were subjected to descrip- 

tive statistical analysis and transformations to adjust f n r  outliers in distri- 

butions. Table VI- 14 describes the findings from the knowledge and biographical 

data. 

The main thrust wvls the combined analysis of diagnostic data, decision 

phase data, and knowledge and biographical data. Sections H,  J, and K which 
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follow detail the results of this combined analysis. Essentially u r e e  

types of analysis were invoived. First, Spearman Rank Correlations were 

examined for all data inputs with emphasis on those correlations with major 

dependent measures. These included merit, efficiency, and correctness 

measures and their derivatives from the diamostic phase and weighting 

functions from the conjoint measurement analysis of the decision phase. 

The rank correlations provided not only insight intn two variable relations 

but indicated input variables for the stepwise regression malysis which 

followed. 

The stepwise regression analysis predicted dependent measures from 

the set  of independent measures (biographical, knowledge measures and 

independent per corm ance rr e asures ) . 
Finally, partitions on the independent measures were examined to ascer- 

tain differeaces in performance measures. The splits varied depending on 

the nature of the variables in question, e.g. ,  pilots WiL clircraft mechanic 

(A and P) ratings vs. pilots without A and P ratings, differences in pilot 

ratings, etc. In addition, some performance measures such dS total merit 

were split into top and bottom quartiles to ascertain differences irl 0thC.r per- 

formance indices. The performance measures a re  listed and defined in the 

Glossary, Table VI-3. 

I. A Rank Correlation Analysis - Combined Data 

Table VI-15 depicts the Spearman rank order corydations for the major 

independent and dependent variables in the analysis. 'I'.iese correlation tests 
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were conducted as a first cut through the data prior ta stepwise regression. 

The :orrelatiom enabled the researchers to get an overall view of relation- 

ships between the variables of interest. Clearly, some significant correla- 

tions resulted because the two variables were related not to each other but 

t?w 

regression. 

h a third variables. These effects were evident with the stepwise 

Table I?- 15 reports rank correlations for experience variables, knowledge 

scores and overall tests. Although a log transform of total and single engine 

hours was employed to adjust for the skewed distribution in these factors, 

such a trznsformation has no effect on rank correlation. The comments to 

follow consider a relationship to be significant if the u valce is 5.10. 

It is interesting to note that total hours is related only to single engine 

hours and not to any of the performance measures. Single engine hours is 

related to knowledge scores. This is to be expected since the knowledge 

test and its subscores were based on single engine aircraft operation. The 

negative correlation of the decision factor, weather, with single engine hours 

suggests that high experience levels lead to less emphasis on weather ir, the 

divers ion decision. 

Knowledge scores are highly related to total merit ( a  = .0001) - a finding 

that holds up in the entire analysis. Knowledge about aircraft subsystems 

definitely a f f x t s  diagnostic performance in a positive manner. Knowledge is 

also related to total correctness ( a = .005) and total efficiency ( u = .003) 

both of which make up total mer it scores. Hence, the knowledgeable pilot is 

more likely to not only get the right answers in diagnostic tests but alsc to get 
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the answers more efficiently, i.e. he uses few inquiries to get the answer. 

As might be expected, Zt and CORINQT a re  also highly correlated to h o w -  

ledge scores since they are derived from total correctness. 

One major finding in the correlations (which holds up with subsequent 

analysis) is  the positive relation of knowledge with time (TIM) ( a  E .OOSS). This 

means that more knowledgeable pilots place high emphasis on "time to air- 

port" in the case of a destination diversion decision. With concern €or 

possible additional complications, knowledgeable pilots want to get the 

aircraft on the ground at the earliest opportunity rather than proceed farther 

to better weather or  facilities. 

As expected, total correctness is related to Zt, CORIKQT, total merit,  

and individual scenario scores. Table VI-15 also indicates pilots who have 

high correctness scores use fewer tracks and fewer inquiries than those with 

lower scores (TOTTRIiS, a = .0116) (Tr)TIXQ, a = .0214). This again 

supports the link between diagnostic correctntss and efficiency of diagnosls. 

U s e  cf control activation related inquiries was negatively related to 

knowledge ( a = .0258), to total efficiency ( a = .0601) and to time weights. 

This was somewhat surprising in light of the value of selected control input 

tests to find problem causes, e.g., prop cycling to ascertain the locus of low 

oil pressure readings in scenario 1. 

The decision xeights show obvious negative intercorrelations with each 

Dther since one cannot have high weighting on more than one attribute. The 

time-knowledge relation described above is again noted. Airports passed 

to locate mechanics in the decision tests is negatively related to efficiency 
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and knowledge scores and positively to total tracks used. If airports passed 

represents a crude measure of r isk then high r isk acceptance pilots have 

inefficient diagnostic procedures and a re  less knowledgeable. 

J. Regression Analysis 

In order to ascertain what factors predict performance measure& a 

series of stepwise regressions were performed. These are listed in 

Table VI-16. The table indicates the dependent variable, the R2, N, and 

the significant predictor variables from three sets of independent variables - 
biographical and experience, knowledge , and other independent performance 

measures. Candidate predictor variables a re  indicated a t  the top of the 

table. The general strategy was to include all  predictor (indep2ndent) 

variables, even those which could be related to each other, e.g. , DIFT 

(total tracks - total unique tracks) and total tracks and total unique tracks. 

The model then selected which of these added the most to the predicticn. 

The model permitted no variable to be introduced if it had been derived from 

another significant predictor variable. 

On the other hand, no predictor variable which formed part of the 

dependent variable was allowed in the regression. For example, since 

Zt = total correct/’total tracks, a predictor variable could not be introduced 

which contained tot31 tracks, c.g., DIFT (DIFT = total tracks - total uniqLc 

tracks). 

I n e n  correctness scores 01 .  ‘ndividual scenarios are examined, C l -C4,  

some interesting results appear. Efficiency is a good predictor of correctpess 
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for scenaric s 2, 3, and 4. Knowledge subscores are good predictors for 

C1 and C4 only. Experience variables (training and rating) show up in Cl 

prediction and (recency) in C3. These are far less significant than efficiency 

as predictors. Control use is  clearly important in scenario 3 as  might be 

expected (this was the rough running engine scenario). The number of 

inquiries per track is a positive predictor of correctness in scenarios 

2, 3, and 4. It seems evident that scenario 1 differs from the other three 

scenarios probably because of its unique nature, i.e., it required the 

pilot to seek information about conditions inside +he cockpitibut not on the 

panel. Weather weighting was a negative predictor for C2 and C4. 

Pilots with good total correctness scores are characterized by high 

efficiency, a low number of total inquiries, a low number of tracks, a 

low DIFT (total tracks - total unique tracks) and thus a high number of 

inquiries per track. Knowledge is also a good yredictor. Note, no 

biographical and experience factor predicts total correctness. 

Individual scenario efficiency scores show little predictability from 

howledge test  scores. Efficiency on scenario 1 is related to experience 

va:,iables, i .e.,  training, rating, and recency - again supporting earlier 

fipilngs on C1. Most of the efficiency prcliictors on the scenarios include 

total tracks (negatively) for El, E2, E4, and unique tracks for E3. Interest- 

ingly enough, control activation is a good predictor (negative) for El, €2, 

an' E4. 

For total efficiency prediction, total tracks, and total control movements 

a re  negatively significant. Total correctness is also a significant predictor, 

again linking good performance with efficient performance. 
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In general, efficiency lrreasures led to better prediction than correctness 

scores (higher R squares). What was  surprising was  the absence of kmw-  

ledge, biographical and experience variables as  significant predictors for  total efficiency 

For total merit prediction, the knowledge score is the best predictor 

( a = . O O O l ) .  Later, when extreme scores on total merit are examined through 

t-tests, knowledge scores differentiate well between high and low merit scores.  

Total merit is also predicted by DIFT. Low DIFT yield high merit scores which 

suggest@ a nonrandom approach by high performance ?core pilots. Not sur- 

prising, Z and CORINQT were much !!ke total merit since all three measures 

a re  functions of total correctness. Knowledge was a significant predictor for 

these performance measures. No experience variables were significant. 

CORINQT was like merit. Zt revealed total unique tracks and total efficiency 

as predictors. 

t 

Table VI-16 also shows that knowledge scores a re  significant predictors of 

time weighting and airports passed in the decision phase. In both cases 

CATSCRl was a negative prediction. CATSCRl deals with engine and fuel 

systems. CATSCR2 [electrical and cockpit operations) appears to be more 

germaine to the destination diversion decision. A s  expected, pilots,who weight 

time as criticaLpass few airports. Pilots who consider weather weightings 

a s  critical are  wii!ing to pass airports to locate a mechanic. Although the 

R squares were low, biographical and eqer ience  factors appear for weather 

and ATC weighting. These will be examined later in partition testing. 

Since knowledge has bearing on performance it was decided to seek pre- 

dictors of the total knowledge scores. Table VI- 16 reveals that type of flying, 
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training, and recency of flight all are significant predictors. Non-pleasure 

flying, high recent experience and military training yield higher knowledge 

scores. Both approach aid weightings and total tracks are L,c.Dd predictors 

of knowledge in an inverse direction. 

K. Tests on Data Partitions 

Table VI-17 shows a series of tests on extreme partitions of major 

independent 3nd key dependent measures to ascertain if differences might 

exist in extreme cuts through the data as compared to regression of the entire 

data set. Test candidates for  the partitions included twenty-one performa-ce 

variables. TW!I state variables a re  easier to examine in this framework, 

i . e .  , mechanics vs. non-mechanics , military vs. civilian training and 

go vs. no-go preferences for the decision flight. ' N e n 9  dependent 

measures shown in Table VI-16, plus two experience measures were considered 

for performance differewcs in the data splits. 

Pilots with recent flight experience (over fifty hours in the past year) 

were more knowledgeable and used less control activations than pilots with 

less than twenty hours in the past year. Surprisingly enough, diagnostic 

and decision performance were not different - perhaps due to the small 

number of low7 recency pilots. 

Total hours of experience ( 4 1007 hrs .  vs.  > 5375 hrs.) showed no 

relation to performance. Separating single engine hours experience revealed 

greater knowledge for pilots with over 2075 single engine hours vs. those 

with less than 488 hours. Splits on ratings revealed commercial and ATP 
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rated pilots have more know1 ?dge than private pilots. For training 

partitions, military training leh to higher knowledge scores than non- 

military training. A split on IFR hours revealed a slight totL.1 correctness 

difference with the two groups ~ < 175 hrc. vs. > 7930 hrs .  ). In all of the 

splits above there was ljttle o r  no performance difference. 

When pilots under age thirty a re  compared to thrse over fifty, gerformance 

differences begin to appear. Younger pilots have higher merit,  Zt and CORINQT 

scores than older pilots, yet have less experience (total hrs .  and single engine 

hrs.). Type of flying also showed performance effects. Pleasure flying 

pilots showed less knowledge, less experience, less efficiexy, iiiore tracks 

and larger DIFT than pilQts who fi- for airline, comm. . Aal, business, or 

military purposes. 

When performance measures a r e  split to get profiles of high scare  pilots 

vs. low score pilots, many other independent performance effects a re  noted. 

Focus is on dependent variables o r  other measures not related to the parti- 

tioner variable. When partitioning on knowledge, the high knowledge scores 

(216) a re  associated with: 

a )  higher single engine hours experience 

b) hAgher nzightings on time in the decision phase 

c )  higher correctness and merit scores 

d) higher efficiency scores 

e )  fewer inquiries 

f ) fewer tracks 

g) fewer unique tracks 

than pilots with low knowledge scores (less than 10). 

136 





z 



139 



I 



W5en the top and bottom quartile on merit and correctness scores are 

examined, an interesting pattern emerges. Members of the upper quartile 

of performance scores are associated with: 

a) more knowledge 

b) greater weights o r  time 

c )  fewer inquiries 

d) fewer tracks 

e)  fewer unique tracks 

f )  lower DIFT 

g) higher efficiency 

h )  higher single engine hours (total correctness only and here 

Q = .07) 

When upper and lower quartiles in total efficiency are examined much the 

same patterns as indicated above result. 

Since time weighting appears to be associated with good diagnostic per- 

formance, splits on time -?:eights were made to test for performance effects. 

High time weightings look again like the l ist  above, i.e., greater knowledge, 

efficiency, correctness and merit with fewer tracks, fewer inquiries and lower 

DIFT. 

In the regression analysis, airports passed was predicted by knowledge 

subscores, time weighting, and DIFT. Table VI-17 shows that a split on 

airports (2 5 vs. > 2) shows that low number of airports passed is related 

to higher efficiency and knowledge and lower values for DIFT, uniaue and total 

tracks and total inquiries. 
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L. GAT Subjects in PIP Tests 

Eight of the subjects who participated in the FMS experiments also 

participated in the PIP experiments. A l l  of the subjects from the first  

GAT scenario (fuel loss) and all from the second GAT scenario (partial 

power failure) participated. None from the third G-4T scenario (partial 

navigation system failure) participated. 

Subjects 11, 33, 34, and 35 were used in the fuel loss FBZS experiment. 

Subjects 28, 31, 32, and 38 were used in the partial power loss F S S  exper- 

iment. 

Some typicai performance measures for this group of subjects are high- 

lighted in Table VI-lS. The encouraging thing about this comparison is that 

the results appear to be reasonably consistent. The subjects for each F3IS 

experiment a re  equally distributed with respect to airman certificates held 

(one Pvt., two comm., and one ATP in each group) in similar portions ta 

the entire P/P group. 

Each GAT subject was ranked from one (best performance) to four 

(poorest performance) by a subjective evaluation of the experimenter present 

daring all of the GAT runs. Each subject was ranked separately for "Aviating", 

"Savigating", and "Communicating" for the scenario in which he participated. 

"=\viatingo' reflected basic stick and rudder skills. "Navigating" reflected the 

ability to follow the flight planned course and the subjects awareness of location 

along the route. "Communicating" reflected the professional nature of the 

infwmation eschange bebveen pilot and control!er. A11 GAT subjects took 
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the open form knowledge survey prior to the experiment. These data a re  

also noted in Table VI-18. 

The first  observatir 1 to make is that knowledge scores on both forms of 

knowledge survey seem to agree. Those scoring high on the open-form also 

score high on the closed-form. 

The second observation to make i s  that GAT performance rank is generally 

consistent with total correct (TOTCOR) and total merit (TOThIERIT) scores 

on the P/P scenarios. In GAT scenario 2 the rank order of "Aviating" in 

exactly the same as the rank order of TO"3IERIT. Other rankings a r e  less 

perfect but still e-xhibit the same general trends. 

Although the sample size is  too small  to draw definitive conclusions, taken 

as  a group, results for these eight subjects seem to indicate that either FbfS 

or  P/P scenario experiments can be used to evaluate pilots with some 

assurance that relative rankings will  be preserved. 

31. Summary 

The above analyses have found the same pattern running through the data. 

The three statistical approaches lead to the same conclusions. These are: 

1. ) Correctness in diagnostic scores is highly related to efficiency 

in reaching diagnostic answers. 

2 . )  Most biographical and experience variables do not appear to be 

related to diagnostic performance measures (the exception is the 

A & P mechanic rating which does appear to be related to 

di'gnostic performance). 
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3. ) Knowledge scores are positively related to  both correctness and 

efficiency in diagnostic performance. 

4. )  Of the four airport attribute weightings only high time weighting 

is related to high diagnostic performance. 

5 .  ) Patterns of information seeking for high diagnostic performance, 

i.e., high efficiency and high correctness, involve 

a)  a minimal number of tracks employed 

b) a minimal number of unique tracks employed 

c) a minimal number of total inquiries 

d )  a small number of track repeats, i.e., DIFT (total tracks - 

total unique tracks) is small. 

Although most experience and biographical factors failed to be significant 

in the analysis, some did appear to be related to knowledge scores - such as 

high total single engine hours, high recency, military training background and 

non-pleasure flying. 
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VII. ANALYSIS OF PROCEDURAL COMPLIANCE 

.4. Background 

At the same time that the GAT and paper and pencil scenarios were 

being developed for single pilot CIFE'S, a parallel study directed toward 

airline cockpit crew operations was undertaken. The person responsible for 

this effort was Lt. Col. Jeffrey Schofield who performed the research as  

his Ph.D. dissertation project. A copy of that dissertation, "Aircrew 

Compliance With Standard Operating Procedures As A Component of Airline 

Safety", is on file as part of this project's records at NASA-Ames. 

Schofield used data generated in an experiment conducted in 1976 by 

Dr .  H .  P. Ruffell Smith under the auspices of the NASA-Amev Research Center. 

The Ruffell Smith research utilized a full-mission simulation to study the per- 

formance of fully qualified airline crews under varying conditions of workload. 

The cockpit was that of a Boeing 747 which accomodated the usual three-person 

crew plus two observers, a simulator operator/traffic controller, and an 

audio coordinator. The full-mission scenario used was  built around a charter 

flight from Dulles Airport to Heathrow Airport (London) with a thirty-minute 

intermediate stop at Kennedy Airport (Sew York) for fuel and cargo, The first 

segment placed relatively low workload on the crews, while the second seg- 

ment was much higher due to pre-programmed mechanical failures. 

Ruffell Smith concentrated on crew e r ro r s  during the second segment (high 

workload) of the scenario. HE was interested in establishing statistically 

significant physiological o r  historical predictors of crew performance during 
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the second leg. Schofield, on the other hand, chose to emphasize the routine 

o r  customary tasks of flight operations a s  exemplified by the first segment 

of the Ruffell Smith scenario. Furthermore, he was concerned with: 

1) quantifying routine crew procedures, 2)  analyzing observed crew e r r o r s  

to identify which particular crew members were the primary causes of such 

e r ro r s ,  and 3)  comparing measures of procedural compliance and operator 

e r ror .  

The primary data used by Schofield came from the audio tracks of the 

FhI tapes and handwritten documents generated by the Ruffell Smith study. 

This information was supplemented by data which was culled from the Aircraft 

Operating Manual, the Company Operations hIanual, the Federal Aviation Regu- 

lations, crew handbooks, and assorted navigational documents. 

B. Procedures 

A procedure is  defined as  ''a symbolic and mnemonic representation of a 

set of sensory, cognitive, and/or motor activities which, when recalled and 

executed within determinable tolerances, complete a task as designed". 

The word "procedure" and its many aliases appear throughout aviation litera- 

ture. Schofield identifies nineteen separate words and phrases associated with 

aircrew operations which have procedural conotation. 

Schofield enumerates a set  of normal operating procedures, as opposed to 

Abnormal, Alternate, Irreqular, or Emergency procedures, which represcnt 

an idealized sequence based on the events in the Dulles-JFK segment of the 

Rufftall Smith experimental scenario. A l l  of his procedures a re  considered 



mandatory for normal flight operations in instrument meteorological conditions. 

Each procedure is identified by published format and the cockpit crew mem- 

bers  expected to exhibit active procedural behavior. These a re  catalogued 

in Table VII-1. 

The astonishing fact in this list is that 97 normal operating procedures 

can be identified for standard cockpit activities lasting approximately 75 

minutes. This lengthy list does not include any "optional" procedures or  

emergency type procedures. They represent only standard operating proced- 

ures  for the first leg of the simulated flight scenario. 

Schofield has identified several empirical taxonomies which seek to 

classify these procedures in ways to identify useful relationships among 

them. One such grouping is the set  of 21 crew coordination procedures shown 

in Table VII-2. Crew coordination procedures a re  emphasized since they cap- 

ture the essential ingredients of group leadership, crew management and 

behavioral conformity. Schofield examines the resltionships between meticu- 

lous compliance with coordination procedures and the crew e r ro r s  noted by 

Ruffell Smith. 

C. Compliance Assessment 

Although Ruff -11 Smith used eighteen crews in his experiment, the quality 

of the data generated and the obsei vers were not the same for all eighteen 

simulation runs. Schofield selected ten runs, which had the same set  of 

observers and usable audio data throughout, for detailed procedural analysis. 

The 21  crew coordination procedures were further subdivided into checklists 



Table VII-1 

NORMAL OPERATING PROCEDURES 

Index Format(') o p e r a t o r  (2) 

Number Name codes codes 

1. 
2. 
3. 
4 .  
5 .  
6. 
7.  
8. 
9 .  
10. 
11. 
32. 
13. 
1 4 .  

15. 
16. 
1 7 .  
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26.  
27 .  
28. 
29. 
30. 
31. 
32. 
33. 

3 4 .  
35. 

36. 
37. 
38. 
39 0 

Bas ic  ATC communications p r a c t i c e s  
P r e f l i g h t  Radio Checkl is t  
Gear p i n  s t a t u s  r e p o r t  
Hydraul ic  s y s t e m  p r e s s u r i z a t i o n  
ATIS r e p o r t  
Clearance Del ivery communications 
Ground Control  communications 
Pre-start  Check l i s t  
Ground crew r e p o r t  
Cabin r e p o r t  
Eng inee r ' s  S t a r t  Check l i s t  
Start Check l i s t  
Engine s t a r t i n g  
Ground connect ions and hand s i g n a l s  

Eng inee r ' s  Taxi Checkl is t  
P r e - t a x i  Check l i s t  
T r a n s f e r  of EGT monitor 
Ground Con t ro l  communications 
Taxi 
Takeoff and d e p a r t u r e  b r i e f i n g  
F i n a l  v e i g h t  and balance computation 
Taxi Check l i s t  
Tower communications 
Passenger  pre-takeoff announcement 
Engineer '  s Takeoff Check l i s t  
Runway l i n e  up 
Takeoff Checklist 
Thrust  s e t t i n g  ( t akeof f  power) 
Takeoff 
Takeoff c a l l o u t s  
Eioise abatement depa r tu re  
Gear r e t r a c t i o n  
Departure  Control  c o m u n i c a t i o n s  

Thrust  s e t t i n g  ( r a t e d  power) 
Departure  Control  communication 

( r a d a r  v e c t o r )  
Flap r e t r a c t i o n  
A l t i t u d e  c a l l o u t  
I n t e r m e d i a t e  l e v e l  off 
Depar tu re  Control  communications 

(cl imb c l ea rance )  

r e p o r t  

( i n i t i a l  c o n t a c t )  

N 

N 
N 

G ,  N 

N 

PNF 
P2 
P 1  @ 

P 1  6 FE 
U 
PNF 
PNF 
A 
P1 
P 1  
FE 
A 
P 1  L FE 

P 1  
FE 
A 
P1 6 FE 
PNF 
PF 
PF 
FE 
A 
PNF 
PF 
F E  
PF 
A 
PF 6 FE 
PF 
PNF 
PF 
PF 6 PNF 

PNF 
PA 6 FE 

P W  
PF 6 PNF 
PNP 
PP 

PNF 
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Table VII- 1 (con't. ) 

-. 
(1) 3)  

Index Format Opera t rr 
Numter Name codes codes 

40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. 

49. 
50. 
51. 
52. 
53. 
5 4 .  
55. 
56. 
57. 
58. 
5 9 .  
60. 
61. 

62. 
63. 
64. 
65. 

66. 
67. 
68. 
4 9 .  
70. 
71. 
72. 
73. 
74. 

75. 
76. 

77. 

Airways nav iga t ion  p r a c t i c e s  h 
Thrust set  t l n g  ( r a t e d  pover) G a N  
Climb (below 10,000 f e e t  MSL) h' 
Cor-any d e p a r t u r e  r e p o r t  N 
ARTCC communications ( i n i t i a l  c o n t a c t )  N 
Seat  b e l t  s i g n  N 
Climb (above 10,000 f e e t  MSL) N 
A f t e r  Takerff  Check l i s t  C,N 
Altimeter reset [not a p p l i c a b l e  f o r  

c r u i s i n g  below 18,000 f e e t ]  N 
'-RTCC communications ( r o u t e  c l e a r a n c e )  N 
C r u i s e  d a t a  G , N  
A l t i t u d e  c a l l o u t  N 
Level o f f  h' 
Mach number/airspeed c rosscheck  N 
Cru i se  N 
ARTCC communications ( r a d a r  v e c t o r )  N 
Turbulence p e n e t r a t i o n  E! 
ARTCC c o m u n i c a t i o n s  ( r a d a r  v e c t o r )  N 
Turbulence e x i t  N 
ARTCC communications ( r o u t e  c l e a r a n c e )  N 
Fuel  sys t ems  management c ,N 

i n i t i a l  c o n t a c t )  N 
ATIS r e p o r t  N 
Company a r r i v a l  r e p o r t  N 
Approach b r i e f i n g  14 

i n i t i a l  con tac t )  N 
Approach d a t a  and speed bug6 G , N  
Passenger a r r i v a l  announcment  N 
Descent Check l i s t  C,N 
AR'ICC communications ( d e s c e a t  c l e a r a n c e )  N 
Descent (above 1G,000 f e e t  kc!,) N 
Altimeter reset N 
Seat  b e l t  s i g n  and l a n d i n g  l i g h t s  N 
Descent (below 10,300 f e e t  MTL) h 

( i n i t i a l  con tac t ;  c l e a r a n c e )  N 
Approach Check l i s t  C,N 
Category I Instrument Landing System 

(ILS) Approach G,K 
Approach r a d i o  cbecks N 

ARTCC cczmunications ( c e n t e r  change; 

ARTCC communications ( s e c t o r  change: 

Approach Control  communications 

PF 6 P1JF 
PF d FE 
PF 
U 
FNF 
U 
PF 
PF 6 %E 

A 
PNF 
FE 
PNF 
PF 
Fz 
PF 
PNF 
A 
PNF 
A 
PN€ 
FE 

PIG 
U 
U 
PP 

PhT 
A 
PF 
A 
PNF 
PF 
A 
U 
PF 

Y G  
.i 

Pl- 
PF 6 PNP 
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Index Formarll’operator (2) 

h m b e r  Name codes codes 

78. 
79. 
80. 

81. 
82. 
83. 

84. 
85. 
86. 
87. 
88. 
69 .  
90. 
91. 
9? .  
93. 
94. 
9 5 .  
96.  
9 7 .  

A l t i t u d e  c a l l o u t  
No smoking sign 
Approach Control communications 

( r a d a r  vec to r )  
Approach f l a p  ex tens ion  
Course ba r  and g l i d e  s l o p e  c a l l o u t s  
AFproach Control  c o m u n i c a t i o n s  

Landing gea r f l and ing  f l a p  ex tens ion  
Landing Check l i s t  
F i n a l  approach f i x  (FAF) c o m n i c a t i o n s  
EM i i -s t -unent  crosscheck 
Prec isim approac\ c a l l o u t  
Out scan and v i s i b i l i t y  c a l l o u t s  

Landing r o l l  c a l l o l l t s  
Tower conmunica lkns  
A f t e r  Landing Check l i s t  
Tax i  
Sroupd Control  c m u n i c a t i o n s  
P a r k i n g  
Blocks Check l i s t  

(approach c l ea rance )  

141- ‘ 

N 
N 

N 

N 
G ,N 

PNF 
U 

PNF 
PF 6 PNF 
PNF 

PNF 
PF 6 PNF 
A 
PNF 
PNF 
PNF 
PNF 
PF 
PNF 6 FE 
PhT 
A 
PP 
PNF 
PF 
h 

(1) Format Codes: C (Checklist), G (Graphical), h’ (Narrative) 
(2) Sperator codes: A (Al l ) ,  PI (Captain), PZ (Copilot), FE (Flight Engineer), 

PF (Pilot Flying), PhF (Pilot Not Flying), CT (Unspecified) 
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Table VII-2 

CREW COORDINATION PROCEDURES 
(To be used for q u a n t i t a t i v e  compliance assessments)  

I n d e x  
Letter Procedure Name 

A .  P r e - s t a r t  C h e c k l i s t  

n. 
C. 

D. 
E. 

F. 
G. 

H. 
I. 
J. 

S t a r t  Checkl i s t  

Pre- tax i  C h e c k l i s t  

Transfer  of ECT Monitor 

Taxi Checklist 

Takeoff C h e c k l i s t  

Takeoff C a l l o u t s  

Gear R e t r a c t i o n  

Flap Retraction 

A l t i t u d e  C a l l o u t  

I;. After Takeoff C h e c k l i s t  

L. A l t i t u d e  C a l l o u t  

M. Transfer  of A i r c r a f t  Cont ro l  

N. 
0. 

P. 

0. 
R. 
S. 

T. 
U. 

Descent C h e c k l i s t  

Approach C h e c k l i s t  

A l t i t u d e  C a l l o u t  

Approach Flap Extension 

Landing Cear/Landlng Flap  Extens ion  

Landing C h e c k l i s t  

P r e c i s i o n  Approach C a l l o u t s  

Landing R o l l  C a l l o u t s  
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callouts, configuration changes, and transfers. Performance of each of the 

ten crews was then evaluated for each subdivision. 

Pre-start, Start, Pre-Taxi, and Takeoff Checklists are s i p p s e d  to be 

initiated upon command of the captain or the flying pilot. The other pilot is 

then to announce the Fime of the checklist as  a confirmation of the command, 

and read the o p ~  iing challenge. Lace initiated, checklists may be delayed 

by interruptiots, but ultimately must be resumed and completed in toto. 

In every esperimental run the requisite challenges and responses were 

made, even though some of the operator actions and replies were contrary 

to procedural specifications. However, there were  remarkable differences 

in the patterns of behavior noted among crews for these five checklists. In 

3 total of fifty opportunities over ten flights, the command-announcement-challenge 

sequence \vas fully executed only five times. The observed shortcuts raised 

questions in Schofield's mind about possible degradation in crew cohesion 

leading to increased uncertainty and lack of internal order. 

The five audible checklists conducted by the two pilot crewmembers, were 

contrasted with three checklist sequences (Descent, Approach, P .1 Landing) 

in which the flight engineer was the challenger. Exactly half of the observed 

thirty sequences here began in the prescribed command-announcement-challenge 

order and only one was missing the initial command. In addition to collectively 

making more of the prescribed announcements than their pilot counterparts, 

the flight enginee-s were more self-consistent. Three engineers omitted all 

announcerrr :nd three others omitted one. They also were more consistent 

than pilots in following the response to the last challenge et?.tement v ith the 
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prescribed procedure completion statement. When a pilot was the last 

challenger, 20% of the time the completion statement was  omitted; when an 

engineer was the last challenger, only 4% were omitted. Schofield hypothesizes 

that crew coordination might be improved by making the flight engineer the 

challenger of all checklists. 

Callout procedures a r e  fundamentally different from checklists. In the 

usual format the non-flying pilot acts as  a back-up o r  second-level visual 

monitor who audibly relays operating information to the flying pilot. Callouts 

occur during take-off, climb, descent, approach, and landing. 

Schofield identifies 170 opportunities, among the ten crews, to execute 

callout procedures. Thirty-eight procedural e r ro r s  were noted, half of 

which were e r ro r s  in altitude callouts during climb o r  descent. The e r r o r s  

noted were callouts made q the flying pilot rather than the non-flying pilot 

(seven cases), late callouts (thirteen cases),  and omitted callouts (twenty cases). 

Procedures for gear and flap extenaion/retrnction were well executed in 

terms of established ora1 procedures. In 104 observed configuration changes 

one of the two prescribed verbslizatirrs was omitted four times, and one 

change (from flaps 1 to flaps up) was made without comment from either pilot. 

However, Schofield noted that aircraft altitude and location over the ground 

varied considerably at the initi.-tIon point of selected configuration change 

procedures (e.g., the Xoise -1batement Departure Procedure), which were to 

be performed si mu1 tmeous ly . 
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Verbal indicators of the transfer of Exhaust Gas Temperature (EGT) 

Monitor and Transfer of Aircraft Control Procedures typify the quality of 

communications between specific pairs of crew members. In only two of 

the ten simulatcd flights does the flight engineer fail to advise the flying 

pilot when he can relinquish responsibility for monitoring EGT. However, 

in spite of obvious needs to effect the optional transfer of control procedure, 

two crews never use it and three crews execute incomplete double transfers. 

Only one crew uses mare than two transfers \ 4 )  during the simulated flight. 

Schofield further develops the thesis that verbal behaviors dictated by 

the aforementioned crew coordination procedures can reasonably be expected 

to enhance crew-coordination and flight safety. He also notes that non-compliance 

appears to depend more upon the operstors involved than on the requirements 

of the procedures. 

D. E?-rors and Procedural Comdiance 

Schofield modified and expanded thm Ruffell Smith e r r o r  counts so  that 

every e r ro r  is identified and individually related to an operator or group of 

operators. Those data a re  summarized in Table M - 3 .  The e r r o r  categories 

coded by responsible operator are: pilot flying (PF), pilot not flying (PNF), 

captain, co-pilot, pilot team, flight engineer CFE), and entire crew. These 

categories cover all the e r ro r s  recorded. 

The next step was to investigate poteiltial relationships between tho 

enumerative e r r o r  data and the enumerative procedure compliance data. 

Because of the limited sample size,  relationships noted below should be taken 
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as indications of fruitful directions for further research rather than as  

deftnitive results. 

A set  of fifteen dependent variable categories (error counts) was generated 

by creating various combfiations of six of the categories noted in Table VII-3. 

A set of seven indepeadent variables (five involving procedural compliance and 

two involving crew experience) was also generated as no+>d in Table Vn-4. 

Stepwise multiple regression techniques were then used to identify the Sest 

models relating the independent (procedural) variables to each of the dependent 

(error) variables in turn. Results of that analysis, noting independent variables 

included and the maximum coefficients of determination, a re  shown in Table 

In- 5. 

Dependent variables, which reflect e r rors  by the flying pilot (PF, TPF, 

CPF), by the captain (CAP, TCAP, CCAP) and by the two pilots collectively 

and individually (PLTs), all have highly significant regression models in 

which pilot flying checklist commands (PFCK) and non-flying pilot callouts 

(PKFC) are  the common independent variab1.s. That is, pilot e r rors  do 

appea, to be related to those two classes of procedural non-compliance. 

E. Procedures Summary 

The Schofield study of procedural compliance by aircrews who participated 

in the Ruffell Smith e-xperiment suggests the following observations: 

1) Crew members face an impossible challenge in attemptiag 

to mentally catalog all of the standard operating procedires 

(SOP) published f G r  them. 
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2) Routine non-compliance with an assortment of SOP'S has been 

documented. 

3) Forty-five percent of the enumerated crew e r ro r s  involved 

two or more operators, which suggests that human redundancy 

by itself does not erradicate personnel error.  

4) A statistical link appears to exist between operator e r rors  

and procedural compliance. 

5) Full mission simulation offers new possibilities for studying 

aircrew behavior in a controlled, high fidelity, operational 

setting . 
6) Altitude callouts, which duplicate functions performed by a 

machine, produced the highest frequency of non-compliant 

behavior, suggesting that they may need modification. 

7)  Lack of unitary leadership and internal coordination was most 

often observed when the captain was not flying the aircraft, 

suggesting a need to redefine flying co-pilot responsibilities. 

F. Procedures Epilogue 

As a follow-on to the Schofield research, a current flight engineer for one 

of the major carr iers  (who is also a graditate stadent at OSU) was invited to 

critique the study i . J  to suggest a method for scaling criticality of normal 

operating procedures. The concLsion 9f the critique was that the Schofield 

research was a valuable first >te2 in supplementing the standard human-engineering 

approach used in aircraft accident investigations. Such investigations often 

158 



U 
b ) F I O d U  

Fl 
r 3 0 0 d F I  

m o r ( r 1 0  

159 



z 
t-c 
s 

ill w 

G n 
bl 
0 

a 
a 
8 
a 

b 

P 

-r 

; 
c 

T 
C 

E 

7 
E c 

a 
a 

. . e . . . . . . * . . . .  . 

160 



result in "pilot e r ro r "  accusations which may in fact have strong procedural 

compliance implications. 

Schofield recognized that not all of the 97 normal operating procedures 

he ident:fied were equally critical to the safety of flight. To obtain some feel 

for aircrew opinions concerning criticality, and concurrently the implied 

importance of compliance, a group of five flight engineers were subsequently 

invited to rate the criticality of these 97 procedures relative to the safety of 

flight. 

The interesting observations here are:  

1) 'R, 're is wide disagreement among flight engineers on the 

criticality of most procedures. 

2)  Only four of the procedures a re  unanimously rated at  the 

maximum (7) criticality. (Takeoff checklist, takeoff, lauding 

checklist and outside scan and visibility callouts. ) 

3)  Noise abatement departure procedures received by far the lowest 

ratings. 

4) There are large differences in the scoring tendencies among 

engineers, e.g. some have far more high criticality ratings 

for prwedures than others. 
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VIII. CONCLUSICNS 

The project began with an early concern for the dynamics of CIFE's and 

broad attempts to identify pertinent research issues. The final products 

were 1) a set  of scenarios with associated hardware and techniques for 

studying CIFE phenomena in a simple flight simulator; 2)  a set  of paper and 

pencil scenarios and associated techniques for studying pilot diagnostic 

strategies and diversion decision making processes; 3) a set  of Knowledge 

testing instruments designed to measure a pilot's understanding of aircraft 

subsystems and troubleshooting; 4) a study relating cockpit crew procedural 

compliance with performance e r rors .  By-products of this research included 

one M.S. design project, one M.S. thesis, and a Ph.D. dissertation. 

A .  Full Mission Simulatioc 

Twelve subjects were selected for testing in the full mission GAT scenarios. 

Although all were IFR rated, they ranged in age from 20 to 56 years old, in 

flight experience from 270 to 8800 hours and in certification from private 

pilot to ATP. Each subject was given two different forms of the knowledge sur- 

vey to complete and was thoroughly debriefed after his flight. 

A wide range of cockpit management styles and apparent skill levels were 

observed. Although it was difficult to quantify, "good perf lance'' was 

easily recognized by the observers of the experiment. The elements of "good 

performxmce " included : 

1) professional use of the radio 

2)  precise heading and altitude control prior to and during the CIFE 
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3)  constant awareness of the aircraft position along its intended route 

4) prompt, but not necessarily instant, response to the on-set of the 

CIFE (detection) 

5 )  systematic procedure for trouble shooting 

6 )  knowledge and use of :..ailable ATC resources 

7 )  diversion decisions which allowed for further potenrial uncertainties 

The sample was too small to indicate anything other than some initial 

hypotheses concerning piiot performance in such a full-miss ion setting. How- 

ever, the following tendencies were noted: 

Cockpit management style varies widely among pilnts. For 

example, some are estremely self-reliant, others want 

immediate and extensive help from ATC while still  others 

make t!ie decision mzking process a joint effort with ATC. 

Good stick and ruddzr people seem to have excess capability 

and maintain good stick and rudder performance during and 

after the CIFE. More marginal stick and rudder people, on 

the other hand, show increased frequency and amplitude of 

heading and altitude excursions, ana experience communications 

diff; x l t i e s  when faced with a CIFE.  

Pilots who score wel l  on the knowledge tests tend 

to perform well in problem diagnosts and decision making. 

From the observations of the e?rperimenters dnd comments mpde by 

participnting subjects, it appears that such a full mission sirnu;- tion exercise, 
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coupled with an appropriate knowledge survey and debriefing, could be a 

valuable tool for recurrent training oi IFR pi1c.s. 

B. P/P Scenarios 

For purposes of znalysis the closed-form hourledge survev was considere” 

to be part 0: the PIP experiments. This knowlzdge survey focused on air-  

craft subsystems and trouble shooting in three major aroas: 1\ engine and 

fuel s y s t e m ,  2) electrical systems and cockpit instrumentat; 

and IFR o?erations. 

and 3) wzather 

A ser ies  of Spearman Rank Correlation studies, stepwise regression 

analyses and t-tests were performed on the combination of pilct background 

variables, knowledge survey results, diagnostic scenario performance and 

decision making measures. Among the observations made from these analyses 

a re  the Iollowing: 

1) There is no correlation between knowledge score and total 

flight hours. 

2)  Knowledge score is correlated with pilot ratiogs held. 

3) Pilots good in one section of the knowledge survey tend to be 

good in all sections. 

4) Diagnostic performance is h:ghly correlated with knowledge scores.  

3)  Knowledge is inversely related to total d!sgnostic inquiries, 

e. g. , knowledgeable pilots reach xinclusions (right cr wrong) 

m .apidly than othprs. 

6) Z dral diagnostic inquirias is inverscly related to correcmess. 
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C. 

This implies that undirected experimentation is poor diagnosis 

style. 

Total diagnosis correctness score is correlated with efficiency. 

Civil trained pilots place a higher worth on ATC service in 

diversion decisions than do military pilots. 

Private pilots place a higher worth on weather factors in 

diversion decisions than do commercial and ATP rated pilots. 

ATP rated pilots place high worth on time in diversion decisions. 

Pilots Kith good diagnostic scores place less weight on approach 

aids in diversion decisions. 

Pilots with good diagnostic scores place more weight on time in 

diversion decisions. 

Procedural Compliance 

Schofield used data generated in an e-xperiment conducted in 1976 by 

Dr. H. P. Ruffell Smith to study routine tasks of flight operations involving 

airline cockpit crews during low workload segments of that flight, He was 

concerned with: 

1) Quantifying routine procedures. 

2) Analyzing observed crew e r ro r s  to identyify xhich particular crew 

members were the primary causes of such er rors .  

3) Comparing measures of procedural compliance and operator e r ro r .  

The Schofield study of procedural compliance by aircrews who participated 

in the Ruffell Smith e.xperiment suggests the following observations * 
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1) Crew members face an impossible challenge in attempting to 

mentally catalogue all of the standard operating procedures (SOP) 

plblished for them. 

2) Routine non-compliance with an assortment of SOP'S has been 

documented. 

3) Human redundant!. by itself does not erradicate personnel errors. 

4) .A statistical link appears to exist between operator errors and 

procedural compliance. 
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